Answer:
a) 0.147 N
b) 9.408 N
c) 9.261 N
Explanation:
The tension on the cord is the only force keeping the block in circular motion, thus representing the entirety of its centripetal force
. Plugging in values for initial and final states and we get answers for a and b. The work done by the person causes the centripetal force to increase, and thus is the difference between the final tension and the initial tension.
The total displacement of the person walking from point A to point B is 300 yards.
As shown in the figure we can conclude that the required method to calculate the total displacement is the Pythagoras theorem.
<h3>Pythagoras theorem in brief :</h3>
According to the Pythagorean Theorem, the square that represents the hypotenuse, or side of a right triangle that faces the right angle, is equal to the total of the squares on the triangle's legs.(or, in popular algebraic notation,
).
<h3>Calculation: </h3>
Let,
a = 500
b= 300
Hence by using Pythagoras' theorem
Total displacement of the person =
=
= 
Thus the total displacement of the person from starting point is 300 yards.
Learn more about the displacement examples here:
brainly.com/question/11188852
#SPJ4
Answer:
y = 52.44 10⁻⁶ m
Explanation:
It is Rayleigh's principle that two points are resolved if the maximum of the diffraction pattern of one matches the minimum the diffraction pattern of the other
Based on this principle we must find the angle of the first minimum of the diffraction expression
a sin θ= m λ
The first minimum occurs for m = 1
sin θ = λ / a
Now let's use trigonometry the object is a distance L = 0.205 m
tan θ = y / L
Since the angles are very small, let's approximate
tan θ = sin θ/cos θ = sin θ
sin θ = y / L
We substitute in the diffraction equation
y / L = λ / a
y = λ L / a
Let's calculate
y = 550 10⁻⁹ 0.205 / 2.15 10⁻³
y = 52.44 10⁻⁶ m
That would be a conduction.