1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Contact [7]
3 years ago
12

Write 200m and 2 ×10^4m in kmwrite 5000ms and 5×10^7ms in seconds

Physics
1 answer:
WINSTONCH [101]3 years ago
5 0

Answer:

a) 20.2 kilometers

b)50 005 seconds

Explanation:

You might be interested in
Identify two potential improvements to the opal extraction process and explain how these improvements could minimize harm to the
Orlov [11]

Answer

• Improving the environmental performances

• Developing Green Mining technology

Explanation

The effect to the environment caused by opal mining are; impact on soils and geology, clearing of native vegetation disrupting flora and fauna, change in land use and effects of air quality.

Opal mining is currently examining environmental impacts and adopting measures that mitigate the impacts making the process less destructive to the environment.

With the current commitment to sustainability, opal companies are investing funds for Green Mining as a positive way to impact the environment before and after mining.


7 0
4 years ago
Read 2 more answers
A 25.0 kg box of textbooks rests on a loading ramp that makes an angle α with the horizontal. The coefficient of kinetic frictio
Alekssandra [29.7K]

Answer:

The minimum angle at which the box starts to slip (rounded to the next whole number) is α=19°

Explanation:

In order to solve this problem we must start by drawing a sketch of the problem and its corresponding fre body diagram (See picture attached).

So, when we are talking about friction, there are two types of friction coefficients. Static and kinetic. Static friction happens when the box is not moving no matter what force you apply to it. You get to a certain force that is greater than the static friction and the box starts moving, it is then when the kinetic friction comes into play (kinetic friction is generally smaller than static friction). So in order to solve this problem, we must find an angle such that the static friction is the same as the force applie by gravity on the box. For it to be easier to analyze, we must incline the axis of coordinates, just as shown on the picture attached.

After doing an analysis of the free-body diagram, we can build our set of equations by using Newton's thrid law:

\sum F_{x}=0

we can see there are only two forces in x, which are the weight on x and the static friction, so:

-W_{x}+f_{s}=0

when solving for the static friction we get:

f_{s}=W_{x}

We know the weight is found by multiplying the mass by the acceleration of gravity, so:

W=mg

and:

W_{x}=mg sin \alpha

we can substitute this on our sum of forces equation:

f_{s}=mg sin \alpha

the static friction will depend on the normal force applied by the plane on the box, static friction is found by using the following equation:

f_{s}=N\mu_{s}

so we can substitute this on our equation:

N\mu_{s}=mg sin \alpha

but we don't know what the normal force is, so we need to find it by doing a sum of forces in y.

\sum F_{y}=0

In the y direction we got two forces as well, the normal force and the force due to gravity, so we get:

N-W_{y}=0

when solving for N we get:

N=W_{y}

When seeing the free-body diagram we can determine that:

W_{y}=mg cos \alpha

so we can substitute that in the sum of y-forces equation, so we get:

N=mg cos \alpha

we can go ahead and substitute this equation in the sum of forces in x equation so we get:

mg cos \alpha \mu_{s}=mg sin \alpha

we can divide both sides of the equation into mg so we get:

cos \alpha \mu_{s}=sin \alpha

as you may see, the angle doesn't depend on the mass of the box, only on the static coefficient of friction. When solving for \mu_{s} we get:

\mu_{s}=\frac{sin \alpha}{cos \alpha}

when simplifying this we get that:

\mu_{s}=tan \alpha

now we can solve for the angle so we get:

\alpha= tan^{-1}(\mu_{s})

and we can substitute the given value so we get:

\alpha= tan^{-1}(0.350)

which yields:

α=19.29°

which rounds to:

α=19°

8 0
4 years ago
Which of the following type of personal debts is usually considered wise and justified? A. credit card purchases of luxuries tha
NeTakaya

Answer:

C. Money to pay off other debts and interest

3 0
3 years ago
Read 2 more answers
Where are you on Earth if you experience each of the following? (Refer to the discussion in Observing the Sky: The Birth of Astr
Aloiza [94]

Explanation:

We know that the sky appears to us like a sphere called as celestial sphere which appears to rotate around an imaginary axis because of Earth's rotation. Since the axis cuts the celestial sphere at celestial poles all the object seems to circle around the celestial poles.

Condition 1: The stars rise and set perpendicular to the horizon

The observer is at the equator

Condition 2: The stars circle the sky parallel to the horizon

The observer is at the Pole of the Earth

Condition 3: The celestial equator passes through the zenith

The observer is at the equator

Condition 4: In the course of a year, all stars are visible

The observer is at the equator

Condition 5: The Sun rises on March 21 and does not set until September 21 (ideally)

The observer is at North Pole

7 0
3 years ago
Brayden and Riku now use their skills to work a problem. Find the equivalent resistance, the current supplied by the battery and
Liono4ka [1.6K]

a) 5 \Omega, 1.6 A

b) 6 \Omega, 1.33 A

Explanation:

a)

In this situation, we have two resistors connected in series.

The equivalent resistance of resistors in series is equal to the sum of the individual resistances, so in this circuit:

R=R_1+R_2

where

R_1=4\Omega

R_2=1 \Omega

Therefore, the equivalent resistance is

R=4+1=5 \Omega

Now we can use Ohm's Law to find the current flowing through the circuit:

I=\frac{V}{R}

where

V = 8 V is the voltage supplied by the battery

R=5\Omega is the equivalent resistance of the circuit

Substituting,

I=\frac{8}{5}=1.6 A

The two resistors are connected in series, therefore the current flowing through each resistor is the same, 1.6 A.

b)

In this part, a third resistor is added in series to the circuit; so the new equivalent resistance of the circuit is

R=R_1+R_2+R_3

where:

R_1=4\Omega\\R_2=1\Omega\\R_3=1\Omega

Substituting, we find the equivalent resistance:

R=4+1+1=6 \Omega

Now we can find the current through the circuit by using again Ohm's Law:

I=\frac{V}{R}

where

V = 8 V is the voltage supplied by the battery

R=6\Omega is the equivalent resistance

Substituting,

I=\frac{8}{6}=1.33 A

And the three resistors are connected in series, therefore the current flowing through each resistor is the same, 1.33 A.

3 0
3 years ago
Other questions:
  • Find the cube roots of 27(cos 327° + i sin 327° ). Write the answer in trigonometric form.
    15·1 answer
  • Which of the following statements is true about the nature of light?
    13·1 answer
  • The sun delivers an average power of 1.499 w/m2 to the top of neptune's atmosphere. find the magnitudes of vector e max and vect
    14·1 answer
  • Will you travel in 3.0 minutes running at a rate of 6.0 m/s
    15·1 answer
  • How does the law of the conservation of mass relate to "You can't get something for nothing
    15·1 answer
  • What are three examples of constructive forces
    15·1 answer
  • Car A of mass 1200kg traveling at 10m/s , collided in too the back of the car B, which is stationary. Following the collision,.
    15·2 answers
  • To a man running east at the rate of 3m/s vain appears to fall vertically with a speed of 4m/s. Find the actual speed and direct
    5·1 answer
  • What is cubical expansivity of liquid while freezing
    10·2 answers
  • Hey guys can you help me solve this problem "how long will it take a car travelling 30m/s to come to stop ifs its acceleration i
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!