Answer:
The system makes the transition from nonspontaneous to spontaneous at a temperature of 954.7 K.
Under 954.7 K the reaction is nonspontaneous; more than 954.7 K is the reaction spontaneous.
Explanation:
CH4(g) + 2H2O(g) ⇆ CO2(g) + 4H2(g)
CH4(g) H2O(g) CO2(g) H2(g) ΔH°f (kJ/mol): –74.87 –241.8 –393.5 0
ΔG°f (kJ/mol): –50.81 –228.6 –394.4 0
S°(J/K·mol): 186.1 188.8 213.7 130.7
ΔG<0 to be spontaneous
ΔG = ΔH- TΔS <0
ΔH = ∑nΔH(products) - ∑nΔH(reactant)
ΔH = (-393.5) - (–74.87 + 2*–241.8)
ΔH = 164.97 kJ = 164970 J
ΔS = ∑nΔS(products) - ∑nΔS(reactant)
ΔS = (213.7 + 4*130.7) - (186.1 + 2*188.8)
ΔS = 172.8 J
0 > 164970 J - T* 172.8 J
-164970 J > - T* 172.8 J
954.7< T
The system makes the transition from nonspontaneous to spontaneous at a temperature of 954.7 K.
Under 954.7 K the reaction is nonspontaneous; more than 954.7 K is the reaction spontaneous.
Answer:
Density is a measurement that compares the amount of matter an object has to its volume. An object with much matter in a certain volume has high density.
Explanation:
Answer:
In first shell 2 electrons are present and 7 electrons are present in last shell
Explanation:
<span>The correct answer is d. The reaction releases more energy than it absorbs. An example of an exothermic reaction is fire. Connecting the carbon atoms in wood with the oxygen in the air causes flames and gives of heat and light.</span>