Answer : The radii of the two ions Cl⁻ ion and Na⁺ ion is, 181 and 102 pm respectively.
Explanation :
As we are given that the Na⁺ radius is 56.4% of the Cl⁻ radius.
Let us assume that the radius of Cl⁻ be, (x) pm
So, the radius of Na⁺ = 
In the crystal structure of NaCl, 2 Cl⁻ ions present at the corner and 1 Na⁺ ion present at the edge of lattice.
Thus, the edge length is equal to the sum of 2 radius of Cl⁻ ion and 2 radius of Na⁺ ion.
Given:
Distance between Na⁺ nuclei = 566 pm
Thus, the relation will be:





The radius of Cl⁻ ion = (x) pm = 181 pm
The radius of Na⁺ ion = (0.564x) pm = (0.564 × 181) pm =102.084 pm ≈ 102 pm
Thus, the radii of the two ions Cl⁻ ion and Na⁺ ion is, 181 and 102 pm respectively.