The magnitude and direction (inward or outward) of the net flux through the cell boundary is - 0.887 wb.m².
<h3>
What is flux?</h3>
Flux describes any effect that appears to pass or travel through a surface or substance.
The magnitude and direction (inward or outward) of the net flux through the cell boundary is calculated as follows;
Ф = Q/ε
where;
- Q is net charge
- ε is permittivity of free space
Φ = (-7.85 x 10⁻¹²)/(8.85 x 10⁻¹²)
Φ = - 0.887 wb.m²
Learn more about flux here: brainly.com/question/10736183
#SPJ1
Answer:
<em>Height = 5.65 km</em>
Explanation:
is the circumference or we can say measures the boundary of hemisphere of friction-less ice that he is sitting on.
So, the height will be = 2 x 3.14 x (30)^2 = 5654.7 m = 5.65 km
<u>Option b. </u>A smaller magnitude of momentum and more kinetic energy.
<h3>What is a momentum?</h3>
- In Newtonian physics, an object's linear momentum, translational momentum, or simply momentum is defined as the product of its mass and velocity.
- It has both a magnitude and a direction, making it a vector quantity. The object's momentum, p, is defined as: p=mv if m is the object's mass and v is its velocity (also a vector quantity).
- The kilogram metre per second (kg m/s), or newton-second in the International System of Units (SI), is the unit used to measure momentum.
- The rate of change of a body's momentum is equal to the net force exerted on it, according to Newton's second law of motion.
To know more about momentum, refer:
brainly.com/question/1042017
#SPJ4
Answer:
a) F = 2.66 10⁴ N, b) h = 1.55 m
Explanation:
For this fluid exercise we use that the pressure at the tap point is
Exterior
P₂ = P₀ = 1.01 105 Pa
inside
P₁ = P₀ + ρ g h
the liquid is water with a density of ρ=1000 km / m³
P₁ = 0.85 1.01 10⁵ + 1000 9.8 5
P₁ = 85850 + 49000
P₁ = 1.3485 10⁵ Pa
the net force is
ΔP = P₁- P₂
Δp = 1.3485 10⁵ - 1.01 10⁵
ΔP = 3.385 10⁴ Pa
Let's use the definition of pressure
P = Fe / A
F = P A
the area of a circle is
A = pi r² = [i d ^ 2/4
let's reduce the units to the SI system
d = 100 cm (1 m / 100 cm) = 1 m
F = 3.385 104 pi / 4 (1) ²
F = 2.66 10⁴ N
b) the height for which the pressures are in equilibrium is
P₁ = P₂
0.85 P₀ + ρ g h = P₀
h =
h =
h = 1.55 m
First we need to convert the angular speed from rpm to rad/s. Keeping in mind that


the angular speed is

And so now we can calculate the tangential speed of the child, which is the angular speed times the distance of the child from the center of the motion: