Speed = (distance covered) / (time to cover the distance)
= ( 8.45 km) / (0.65 hr)
= (8.45 / 0.65) km/hr
= 13 km/hr
Explanation:
Work done is the force applied to move a body through a specific or particular direction.
It is also the difference in the amount of energy expended in using an effort.
Work done is given as;
Work done = F x d CosФ
F is the force applied
d is the displacement
Ф is the angle
The unit of work done is in Joules.
Answer:
Gravity is an attractive force as well as electromagnetic, but electromagnetic attracts and repels.
Explanation:
The current in the ideal diode with forward biased voltage drop of 65V is 132.6 mA.
To find the answer, we have to know more about the ideal diode.
<h3>
What is an ideal diode?</h3>
- A type of electronic component known as an ideal diode has two terminals, only permits the flow of current in one direction, and has less zero resistance in one direction and infinite resistance in another.
- A semiconductor diode is the kind of diode that is used the most commonly.
- It is a PN junction-containing crystalline semiconductor component that is wired to two electrical terminals.
<h3>How to find the current in ideal diode?</h3>
- Here we have given with the values,

- We have the expression for current in mA of the ideal diode with forward biased voltage drop as,

Thus, we can conclude that, the current in mA of the ideal diode with forward biased voltage drop of 65 V is 132.6.
Learn more about the ideal diode here:
brainly.com/question/14988926
#SPJ4
<h2>Answer:</h2>
0
<h2>Explanation:</h2>
Since the current carrying wire is placed along the axis of the cylinder, according to the right hand rule, the magnetic field will be tangent to the surface of the cylinder. Therefore, there is no magnetic field through the cylinder.
Remember that the magnetic flux through a given area is the total magnetic field passing through that area. Since there is not magnetic field through the cylinder, the total magnetic flux is therefore zero (0).