D is to stop the current and the force can be removed
Answer:
Here, we are required to determine the total energy of the reaction and determine if the reaction is an endothermic or exothermic reaction.
The correct answer is option C.
First, we need to determine the energy of the reaction.
The energy of the reaction is the change in enthalpy between the product and reactants.
Change of Enthalpy,
Hreaction = Hproduct - Hreactant.
Therefore, for the reaction above, the change in enthalpy is:
Hreaction = 590kJ/mol - 581kJ/mol.
Hreaction = 9kJ/mol.
Hence, since the reaction has an enthalpy change of 9kJ/mol, the reaction is endothermic (i.e energy is absorbed).
Explanation:
Answer:
669.48 kJ
Explanation:
According to the question, we are required to determine the heat change involved.
We know that, heat change is given by the formula;
Heat change = Mass × change in temperature × Specific heat
In this case;
Change in temperature = Final temp - initial temp
= 99.7°C - 20°C
= 79.7° C
Mass of water is 2000 g ( 2000 mL × 1 g/mL)
Specific heat of water is 4.2 J/g°C
Therefore;
Heat change = 2000 g × 79.7 °C × 4.2 J/g°C
= 669,480 joules
But, 1 kJ = 1000 J
Therefore, heat change is 669.48 kJ
Answer:
Calculate the pH of a buffer prepared by mixing 30.0 mL of 0.10 M acetic acid and 40.0 mL of 0.10 M sodium acetate.