This can be done using integration and vector analysis. By considering a differential element of the line charge distribution dq = Q/a*dy, we could calculate the dFx and dFy and solve for Fx and Fy through integration.
dFx = -xkQdq / (y^2 + x^2)^3/2 = -xkQ^2/a/(y^2+x^2)^(3/2)*dy
Fx = integral from 0 to a -xkQ^2/a/(y^2+x^2)^(3/2)*dy
Fx = -xkQ^2/a*int(0, a, dy/(y^2+x^2)^(3/2))
Fx = -kQ^2/x(a^2+x^2)^(1/2)
dFy = kQy/(y^2+x^2)^(3/2) * dq
dFy = kQ^2/a*y/(y^2+x^2)^(3/2)*dy
Fy = int(0, a, kQ^2/a*y/(y^2+x^2)^(3/2)*dy)
Fy = kQ^2/a int(0, a, dy y/(y^2+x^2)^(3/2))
Fy = kQ^2/a * (1/x - 1/(a^2+x^2)^(1/2))
Answer:
B energy can't be created or destroyed
Answer:
The direction in which they rotate is determined by the hemisphere in which they are located. The main overall global wind patterns, the rotation of the Earth, and the shape of ocean basins are the three major factors that decide surface currents.
Answer:
Acceleration is the rate of change of velocity. What is commonly said as ‘ten meter per second squared’ can bee broken down into ‘ten meter per second per second.’ This gives us the true meaning of the term acceleration.
Just like ‘ten meter per second’ means increasing the displacement by ten meters every second, ‘ten meter per second per second’ means increasing the velocity by ten meters per second every second.
So, basically if you consider the case of a free fall motion, where ‘t’ stands for time and ‘v’ stand for velocity at that instant:
At,
t=0, v=0 m/s
t=1, v=0+10 m/s;
t=2, v=0+10+10 m/s;
t=3, v=0+10+10+10 m/s;
This can also be thought as a Arithmetic Progression where common difference ‘D’ is the acceleration(a), since it adds a 10 m/s to velocity every second and the first term ‘A’ stands for the initial velocity (u). Using this approach we can derive to the first equation of motion:
v = u + at
Hope this Answer Helps!!
Explanation:
plz mark me as a brainlest and thank my answer
Answer:
coasting down hill on a bicycle
Explanation:
Coasting down the hill on a bicycle is a typical example of how kinetic energy is being transformed to potential energy in a system.
Kinetic energy is the energy due to the motion of a body, it can be derived using the expression below;
K.E =
m v²
Potential energy is the energy due to the position of a body. It can be derived using;
P.E = mgh
m is the mass
v is the velocity
g is the acceleration due to gravity
h is the height
Now, at the top of the hill, the potential energy is at the maximum. As the bicycle coasts down the potential energy is converted to kinetic energy.