Answer:
52.5°C
Explanation:
The final enthalpy is determined from energy balance where initial enthalpy and specific volume are obtained from A-12 for the given pressure and state
mh1 + W = mh2
h2 = h1 + W/m
h1 + Wα1/V1
242.9 kJ/kg + 2.35.0.11049kJ/ 0.35/60kg
=287.4 kJ/kg
From the final enthalpy and pressure the final temperature is obtained A-13 using interpolation
i.e T2 = T1 + T2 -T1/h2 -h1(h2 - h1)
= 50°C + 60 - 50/295.15 - 284.79
(287.4 - 284.79)°C
= 52.5°C
Answer:
mass is 6.97 pounds
Explanation:
given data
volume = 3.1 liters
density = 1.020 g/ml = 1.02 kg/l
to find out
How many pounds of blood plasma
solution
we know mass formula from density that is
density = mass / volume
so
mass = density × volume ...............1
so put all value to get mass
mass = 1.02 × 3.1
mass = 3.162 kg
mass = 3.162 × 2.205 pounds
so mass is 6.97 pounds
Answer:
The direct answer to the question as written is as follows: nothing happens to gravity when someone jumps up - gravity continues exerting a force on the body of that particular someone proportional to (mass of someone) x (mass of Earth) / (distance squared). What you might be asking, however, is what is the net force acting on the body of someone jumping up. At the moment of someone jumping up there is an upward acceleration, i.e., an upward-directed force which counteracts the gravitational force - this is the net force ( a result of the jump force minus gravity). From that moment on, only gravity acts on the body. The someone moves upward gradually decelerating to the downward gravitational acceleration until they reaches the peak of the jump (zero velocity). Then, back to Earth.