1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serg [7]
3 years ago
5

A runner of mass 56.0kg runs around the edge of a horizontal turntable mounted on a vertical, frictionless axis through its cent

er. The runner's velocity relative to the earth has magnitude 3.10m/s . The turntable is rotating in the opposite direction with an angular velocity of magnitude 0.210rad/s relative to the earth. The radius of the turntable is 3.10m , and its moment of inertia about the axis of rotation is 81.0kg?m2
Question: Find the final angular velocity of the system if the runner comes to rest relative to the turntable. (You can treat the runner as a particle.)
Physics
1 answer:
SCORPION-xisa [38]3 years ago
5 0

Answer: -0.84 rad/sec (clockwise)

Explanation:

Assuming no external torques act on the system (man + turntable), total angular momentum must be conserved:

L1 = L2

L1 = It ω + mm. v . r = 81.0 kg . m2 .21 rad/s – 56.0 kg. 3.1m/s . 3.1 m  

L1 = -521.15 kg.m2/sec (1)

(Considering to the man as a particle that is moving opposite to the rotation of  the turntable, so the sign is negative).

Once at rest, the runner is only a point mass with a given rotational inertia respect from the axis of rotation, that can be expressed as follows:

Im = m. r2 = 56.0 kg. (3.1m)2 = 538.16 kg.m2

The total angular momentum, once the runner has come to an stop, can be written as follows:

L2= (It + Im) ωf = -521.15 kg.m2/sec  

L2= (81.0 kg.m2 + 538.16 kg.m2) ωf = -521.15 kg.m2/sec  

Solving for ωf, we get:

ωf = -0.84 rad/sec  (clockwise)

You might be interested in
Calculate the velocity of a car that travels 581 kilometers notheast in 3.5 hours?
Gre4nikov [31]

Answer:

166 km/h

Explanation:

v= d/t= 581/3.5= 166km/h

7 0
4 years ago
What are three basic conditions for a hurricane to form
tester [92]
High ocean temperatures of above 26.5 degrees Celsius and coriolis effect( deflection of winds create spiraling motion)
3 0
3 years ago
The resistivity of water is increased if salt is added. true or false
sergejj [24]
The answer is true hopes I helped
3 0
3 years ago
Read 2 more answers
You drop a 0.375 kg ball from a height of 1.37 m. It hits the ground and bounces up again to a height of 0.67 m. How much energy
Radda [10]

2.57 joule energy lose in the bounce .

<u>Explanation</u>:

when ball is the height of 1.37 m from the ground  it has some gravitational potential energy with respect to hits the ground  

Formula for gravitational potential energy given by  

Potential Energy = mgh

Where ,

m = mass  

g = acceleration due to gravity  

h = height

Potential energy when ball hits the ground

m= 0.375 kg

h = 1.37 m

g = 9.8 m/s²

Potential Energy = 0.375\times9.8\times1.37

Potential Energy = 5.03 joule

Potential energy when ball bounces up again

h= 0.67 m

Potential Energy = 0.375\times0.67\times9.8

Potential Energy = 2.46 joule

Energy loss = 5.03 - 2.46 = 2.57 joule

2.57 joule energy lose in the bounce

6 0
3 years ago
An archer shoots an arrow with a mass of 45.0 grams from bow pulled
Sladkaya [172]

Answer:

The force the archer need to pull in order to achieve the height is approximately 101.8 N

Explanation:

By energy conservation principle, puling an elastic bow with a force, for a given distance, performs work which is converted to the potential energy of the arrow at height

The given parameters are;

The mass of the arrow, m = 45.0 grams = 0.045 kg

The distance the elastic bow is pulled, d = 65.0 cm = 0.65 m

The height at which the arrow is reaches, h = 150.0 meters

Let 'F', represent the force the archer need to pull in order to achieve the height

Work done, W = Force × Distance moved in the direction of the force

Therefore;

The work done in pulling the arrow, W = F × d

By energy conservation, we have;

The work done in pulling the arrow, W = The potential energy gained by the arrow, P.E.

W = P.E.

The potential energy gained by the arrow, P.E. = m·g·h

Where;

m = The mass of the arrow

g = The acceleration due to gravity = 9.8 m/s²

h = The height the arrow reaches

∴ by plugging in the values, P.E. = 0.045 kg ×9.8 m/s² × 150 m = 66.15 J

W = F × d = F × 0.065 m

Also, W = P.E. = 66.15 J

∴ W = F × 0.065 m = 66.15 J

F × 0.065 m = 66.15 J

F = 66.15 J/(0.65 m) = 1323/13 N ≈ 101.8 N

The force the archer need to pull in order to achieve the height, F ≈ 101.8 N.

3 0
3 years ago
Other questions:
  • What detects the original stimulus ?
    5·1 answer
  • Limestone is an example of a chemical sedimentary rock. describe how limestone may form
    9·1 answer
  • The momentum of blue whale with a mass of 146,000 kg and a top swimming speed of 24 km/hr is kg·m/s.
    14·1 answer
  • Which is given as an explanation for how the Paleozoic supercontinent ice cap melted
    9·2 answers
  • A bullet with a mass of 0.040 kg collides inelastically with a wooden block of mass 1.5 kg, initially at rest. After the collisi
    14·1 answer
  • Any change in the cross section of the vocal tract shifts the individual formant frequencies, the direction of the shift dependi
    14·1 answer
  • An object is moving at a velocity of 14 m/s. It accelerates to a velocity of 48 m/s over a time
    12·1 answer
  • A ship is launched toward the water on a slipway making an angle of 5 degree with horizontal. The coefficient of kinetic frictio
    5·1 answer
  • Kepler’s laws of planetary motion describe each of the three laws
    5·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%5Chuge%7B%20%5Cmathrm%7Bquestion%20%5Chookleftarrow%7D%7D" id="TexFormula1" title=" \huge{
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!