Answer : The mass of sulfuric acid needed is
.
Solution : Given,
pH = 8.94
Volume of solution = 380 ml =

Molar mass of sulfuric acid = 98.079 g/mole
As we know,

![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
![5.06=-log[OH^-]](https://tex.z-dn.net/?f=5.06%3D-log%5BOH%5E-%5D)
![[OH^-]=0.00000871=8.71\times 10^{-6}mole/L](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.00000871%3D8.71%5Ctimes%2010%5E%7B-6%7Dmole%2FL)
Now we have to calculate the moles of
.
Formula used : 
![\text{ Moles of }[OH^-]=\text{ Concentration of }[OH^-]\times Volume\\\text{ Moles of }[OH^-]=(8.71\times 10^{-6}mole/L)\times (380\times 10^{-3}L)=3309.8\times 10^{-9}moles](https://tex.z-dn.net/?f=%5Ctext%7B%20Moles%20of%20%7D%5BOH%5E-%5D%3D%5Ctext%7B%20Concentration%20of%20%7D%5BOH%5E-%5D%5Ctimes%20Volume%5C%5C%5Ctext%7B%20Moles%20of%20%7D%5BOH%5E-%5D%3D%288.71%5Ctimes%2010%5E%7B-6%7Dmole%2FL%29%5Ctimes%20%28380%5Ctimes%2010%5E%7B-3%7DL%29%3D3309.8%5Ctimes%2010%5E%7B-9%7Dmoles)
For neutralization, equal number of moles of
ions will neutralize same number of
ions.
![\text{ Moles of }[OH^-]=\text{ Moles of }[H^+]=3309.8\times 10^{-9}moles](https://tex.z-dn.net/?f=%5Ctext%7B%20Moles%20of%20%7D%5BOH%5E-%5D%3D%5Ctext%7B%20Moles%20of%20%7D%5BH%5E%2B%5D%3D3309.8%5Ctimes%2010%5E%7B-9%7Dmoles)
As, 
From this reaction, we conclude that
2 moles of
ion is given by the 1 mole of 
moles of
ion is given by
moles of 
Now we have to calculate the mass of sulfuric acid.
Mass of sulfuric acid = Moles of
× Molar mass of sulfuric acid
Mass of sulfuric acid = 
Therefore, the mass of sulfuric acid needed is
.
Answer:
A)less
Explanation:
This is because obviously if it's less metallic then it won't have similar traits to metals as well, there's less metal.
Answer:
I cAnT sEe It
Explanation:
like fr i cant see anything on that picture
The question has missing information, the complete question is:
Cobalt(II) chloride forms several hydrates with the general formula CoCl₂.xH₂O, where x is an integer. If the hydrate is heated, the water can be driven off, leaving pure CoCl₂ behind. Suppose a sample of a certain hydrate is heated until all the water is removed, and it's found that the mass of the sample decreases by 22.0%. Which hydrate is it? That is, what is x?
Answer:
CoCl₂.26H₂O
Explanation:
The molar masses of the compounds that forms the hydrate are:
Co = 59 g/mol
Cl = 35.5 g/mol
H = 1 g/mol
O = 16 g/mol
The molar mass of CoCl₂ is 130 g/mol and of H₂O is 18 g/mol, thus for the hydrate, it will be 130 + 18x g/mol.
Let's suppose 1 mol of the compound. Thus, the mass of the hydrate is: 130 + 18x, and the mass of CoCl₂ will be 130 g. Because the mass decreassed by 22.0% :
0.22*(130 + 18x) = 130
130 + 18x = 590.91
18x = 460.91
x ≅ 26
Thus, the hydrate is CoCl₂.26H₂O