1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Makovka662 [10]
3 years ago
6

Continuous and aligned fiber-reinforced composite with cross-sectional area of 340 mm2 (0.53 in.2) is subjected to a longitudina

l load of 46500 N (10400 lbf). Assume Vf = 0.3, Vm = 0.7, Ef = 131 GPa and Em = 2.4 GPa. (a) Calculate the fiber-matrix load ratio. (b) Calculate the actual load carried by fiber phase. (c) Calculate the actual load carried by matrix phase. (d) Compute the magnitude of the stress on the fiber phase. (e) Compute the magnitude of the stress on the matrix phase. (f) What strain is expected by the composite?
Physics
1 answer:
Alecsey [184]3 years ago
3 0

(a) 23.4

The fiber-to-matrix load ratio is given by

\frac{F_f}{F_m}=\frac{E_f V_f}{E_m V_m}

where

E_f = 131 GPa is the fiber elasticity module

E_m = 2.4 GPa is the matrix elasticity module

V_f=0.3 is the fraction of volume of the fiber

V_m=0.7 is the fraction of volume of the matrix

Substituting,

\frac{F_f}{F_m}=\frac{(131 GPa)(0.3)}{(2.4 GPa)(0.7)}=23.4 (1)

(b) 44,594 N

The longitudinal load is

F = 46500 N

And it is sum of the loads carried by the fiber phase and the matrix phase:

F=F_f + F_m (2)

We can rewrite (1) as

F_m = \frac{F_f}{23.4}

And inserting this into (2):

F=F_f + \frac{F_f}{23.4}

Solving the equation, we find the actual load carried by the fiber phase:

F=F_f (1+\frac{1}{23.4})\\F_f = \frac{F}{1+\frac{1}{23.4}}=\frac{46500 N}{1+\frac{1}{23.4}}=44,594 N

(c) 1,906 N

Since we know that the longitudinal load is the sum of the loads carried by the fiber phase and the matrix phase:

F=F_f + F_m (2)

Using

F = 46500 N

F_f = 44594 N

We can immediately find the actual load carried by the matrix phase:

F_m = F-F_f = 46,500 N - 44,594 N=1,906 N

(d) 437 MPa

The cross-sectional area of the fiber phase is

A_f = A V_f

where

A=340 mm^2=340\cdot 10^{-6}m^2 is the total cross-sectional area

Substituting V_f=0.3, we have

A_f = (340\cdot 10^{-6} m^2)(0.3)=102\cdot 10^{-6} m^2

And the magnitude of the stress on the fiber phase is

\sigma_f = \frac{F_f}{A_f}=\frac{44594 N}{102\cdot 10^{-6} m^2}=4.37\cdot 10^8 Pa = 437 MPa

(e) 8.0 MPa

The cross-sectional area of the matrix phase is

A_m = A V_m

where

A=340 mm^2=340\cdot 10^{-6}m^2 is the total cross-sectional area

Substituting V_m=0.7, we have

A_m = (340\cdot 10^{-6} m^2)(0.7)=238\cdot 10^{-6} m^2

And the magnitude of the stress on the matrix phase is

\sigma_m = \frac{F_m}{A_m}=\frac{1906 N}{238\cdot 10^{-6} m^2}=8.0\cdot 10^6 Pa = 8.0 MPa

(f) 3.34\cdot 10^{-3}

The longitudinal modulus of elasticity is

E = E_f V_f + E_m V_m = (131 GPa)(0.3)+(2.4 GPa)(0.7)=41.0 Gpa

While the total stress experienced by the composite is

\sigma = \frac{F}{A}=\frac{46500 N}{340\cdot 10^{-6}m^2}=1.37\cdot 10^8 Pa = 0.137 GPa

So, the strain experienced by the composite is

\epsilon=\frac{\sigma}{E}=\frac{0.137 GPa}{41.0 GPa}=3.34\cdot 10^{-3}

You might be interested in
What are the forces that act on the ball?​
scoundrel [369]

Answer:

This slide shows the three forces that act on a baseball in flight. The forces are the weight, drag, and lift. Lift and drag are actually two components of a single aerodynamic force acting on the ball. Drag acts in a direction opposite to the motion, and lift acts perpendicular to the motion

4 0
3 years ago
An electroscope is a simple device consisting of a metal ball that is attached by a conductor to two thin leaves of metal foil p
baherus [9]

Answer:

the electroscope separate  by the presence of charge carriers

Explanation:

Metal bodies are characterized by having free (mobile) electrons. In the electroscope the plates are in balance; when the external metal ball is touched, a charge is introduced into the device, when the body that touched the ball is separated, an excess charge remains. This charge, being a metal, is distributed over the entire surface, giving a uniform density and an electric force of repulsion is created between the two charged sheets, which tends to separate the sheets. This force is counteracted by the tension component as the sheets are separated at a given angle, the separation reaches the point where

                  Fe - Tx = 0

                  Fe = Tx

In summary, the electroscope separate its leaves by the presence of charge carriers

3 0
3 years ago
What is the kinetic energy of a 120-cm thin uniform rod with a mass of 450 g that is rotating about its center at 3.60 rad/s?
goldfiish [28.3K]

Answer:

1.05 J.

Explanation:

Kinetic Energy: This is the energy possessed by a body due to its motion. The S.I unit of kinetic energy is Joules (J). The formula of kinetic energy is given as

Ek = 1/2mv²................. Equation 1

Where Ek = kinetic energy, m = mass of the uniform rod, v = liner velocity of the rod.

But,

v = αr .......................... Equation 2

Where α = angular velocity of the rod, r = radius of the circle.

Given: α = 3.6 red/s, r = 120/2 = 60 cm = 0.6 m.

Substitute into equation 2

v = 3.6(0.6)

v = 2.16 m/s.

Also given: m = 450 g = 0.45 kg.

Substitute into equation 1

Ek = 1/2(0.45)(2.16²)

Ek = 1.05 J.

4 0
3 years ago
A 50 g mass is freely hanging from a horizontal meter stick at a distance of 99 cm from the pivot. Calculate the weight force W
Neko [114]

Answer:

W = 0.49 N

τ = 0.4851 Nm

Force

Explanation:

The weight force can be found as:

W = mg

W = (0.05 kg)(9.8 m/s²)

<u>W = 0.49 N</u>

The torque about the pivot can be found as:

τ = W*d

where,

τ = torque

d = distance between weight and pivot = 99 cm = 0.99 m

Therefore,

τ = (0.49 N)(0.99 m)

<u>τ = 0.4851 Nm</u>

The pivot exerts a  <u>FORCE </u>on the meter stick because the pivot applies force normally over the stick and has a zero distance from stick.

6 0
3 years ago
If you had 8 balls and 7 of them were a certain weight, and 1 of them was heavier, how could you find the heaviest ball. All the
dybincka [34]

Answer:

There are two method of comparing the balls 1) using a balance  2) by  only 2 weighings.

Explanation:

There are two method of comparing the balls 1) using a balance  2) by  only 2 weighings.

Make the following groups - --- (1,2,3),(4,5,6),(7,8)

Step 1. compare the Weigh (1,2,3) and (4,5,6)

there are 2 possible outcomes:

1---both the group are of same weight. and named as (Case A)

2--- one of the group is heavier than other and named as  (Case B)

Step 2. Let examine both case

In Case A --in this case, now compare the weight of 7th and 8th ball. By this you have recognize the heavier ball by 2 weighing method.

In Case B -- considered the heaviest group (assume group (1,2,3) is heavy), from this group take randomly two ball and compare the their weight. out of these two ball, one  is heavy else the third ball is.

7 0
3 years ago
Other questions:
  • Which statement correctly describes the differences between positive and negative acceleration? Positive acceleration describes
    13·2 answers
  • What is a material that reduces the flow of heat by conduction, convection, and radiation?
    15·2 answers
  • Two converging lenses are placed 30 cm apart. The focal length of the lens on the right is 20 cm while the focal length of the l
    14·1 answer
  • Which stars have the lowest absolute brightness?
    8·2 answers
  • 8. An unpowered flywheel is slowed by a constant frictional torque. At time t = 0 it has an angular velocity of 200 rad/s. Ten s
    7·1 answer
  • Integrated Concepts When kicking a football, the kicker rotates his leg about the hip joint. (a) If the velocity of the tip of t
    6·1 answer
  • A type of invisible matter whose gravity affects how galaxies move is called _____. A. dim matter B. dark matter C. black dwarfs
    9·1 answer
  • You discover a binary star system in which one member is a15 solar mass main-sequence star and the other star is a 10 solar mass
    14·1 answer
  • What advice would a personal trainer give you before a workout?
    7·2 answers
  • Why is an iron bolt attracted to a magnet?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!