Answer:
t = 3.516 s
Explanation:
The most useful kinematic formula would be the velocity of the motorcylce as a function of time, which is:
Where v_0 is the initial velocity and a is the acceleration. However the problem states that the motorcyle start at rest therefore v_0 = 0
If we want to know the time it takes to achieve that speed, we first need to convert units from km/h to m/s.
This can be done knowing that
1 km = 1000 m
1 h = 3600 s
Therefore
1 km/h = (1000/3600) m/s = 0.2777... m/s
100 km/h = 27.777... m/s
Now we are looking for the time t, for which v(t) = 27.77 m/s. That is:
27.777 m/s = 7.9 m/s^2 t
Solving for t
t = (27.7777 / 7.9) s = 3.516 s
Answer:
I(x) = 1444×k ×
I(y) = 1444×k ×
I(o) = 3888×k ×
Explanation:
Given data
function = x^2 + y^2 ≤ 36
function = x^2 + y^2 ≤ 6^2
to find out
the moments of inertia Ix, Iy, Io
solution
first we consider the polar coordinate (a,θ)
and polar is directly proportional to a²
so p = k × a²
so that
x = a cosθ
y = a sinθ
dA = adθda
so
I(x) = ∫y²pdA
take limit 0 to 6 for a and o to for θ
I(x) = y²p dA
I(x) = (a sinθ)²(k × a²) adθda
I(x) = k da × (sin²θ)dθ
I(x) = k da × (1-cos2θ)/2 dθ
I(x) = k ×
I(x) = k × × (
I(x) = k × ×
I(x) = 1444×k × .....................1
and we can say I(x) = I(y) by the symmetry rule
and here I(o) will be I(x) + I(y) i.e
I(o) = 2 × 1444×k ×
I(o) = 3888×k × ......................2
The answer is A. The Sun and all the planets revolve around Earth.
Aristotle believed that the Earth was the centre of the solar system, and the Sun and the planets orbited around it. He believed that the universe was composed of Earth-like bodies, which were at rest, and of heavenly bodies, which were in perpetual motion.
Answer:
Human activities and natural processes have influenced the change in the global temperature by the following processes
1) Green house gas such as carbon dioxide, methane, ozone, nitrous oxide and fluorinated gases produced by the combustion of fossil fuels the use of industrial chemicals, the production of coal, and natural gas
2) Deforestation which reduces the natural process of conversion of carbon dioxide to oxygen, thereby, increasing the greenhouse gases in the atmosphere
3) The accumulation of the greenhouse gases in the atmosphere results in the trapping of heat in the atmosphere, causing the atmospheric temperature to rise
4) Changes in the amount of energy produced by the Sun can result in an increase or decrease in the atmospheric temperature
5) Volcanic activity that occurs at a sufficiently large scale can produce sulfur dioxide that blocks the rays of the Sun from reaching the Earth, resulting in a change of atmospheric temperature.
Explanation:
-- There is no need to develop the pictures. They are available immediately in a digital camera.
-- There is no change in the teacher from one picture to the next.
-- The distance the watermelon falls from the teacher in each new picture is more in each picture than in the picture before it. (C)