The direction in which the wave is moving.
Answer:
The angular speed of the new system is
.
Explanation:
Due to the absence of external forces between both disks, the Principle of Angular Momentum Conservation is observed. Since axes of rotation of each disk coincide with each other, the principle can be simplified into its scalar form. The magnitude of the Angular Momentum is equal to the product of the moment of inertial and angular speed. When both disks begin to rotate, moment of inertia is doubled and angular speed halved. That is:

Where:
- Moment of inertia of a disk, measured in kilogram-square meter.
- Initial angular speed, measured in radians per second.
- Final angular speed, measured in radians per second.
This relationship is simplified and final angular speed can be determined in terms of initial angular speed:

Given that
, the angular speed of the new system is:


The angular speed of the new system is
.
False
If all other factors, such as medium, are kept the same, longitudinal waves tend to be stronger.
Melting
we know that ice melts at 0 ⁰C. in the graph, at position B, the temperature is constant, which indicates that phase change is taking place there. at B , from the graph , we also notice that the temperature is constant at value 0 ⁰C. this indicates that ice at 0 ⁰C is converting to water at 0 ⁰C there at position B in the graph.
hence the correct choice is Melting.
Answer:
3.6μF
Explanation:
The charge on the capacitor is defined by the formula
q = CV
because the charge will be conserved
q₁ = C₁V₂
q₂ = C₂V₂ where C₂ V₂ represent the charge on the newly connected capacitor and the voltage drop across the two capacitor will be the same
q = q₁ + q₂ = C₁V₂ + C₂V₂
CV = CV₂ + C₂V₂
CV - CV₂ = C₂V₂
C ( V - V₂) = C₂V₂
C ( V/ V₂ - V₂ /V₂) = C₂
C₂ = 0.9 ( 10 /2) - 1) = 0.9( 5 - 1) = 3.6μF