Answer:
Potassium
General Formulas and Concepts:
<u>Chem</u>
- Reading a Periodic Table
- Periodic Trends
- Ionization Energy - energy required to remove an electron from a given element
- Coulomb's Law
- Shielding Effect
- Z-effective and Forces of Attraction
Explanation:
The Periodic Trend for 1st Ionization Energy is increasing up and to the right. That means He would have the highest I.E and therefore take the most amount of energy to remove an electron.
Potassium and Gallium are both in Period 4. Potassium is element 19 and Gallium is element 31.
Potassium's electron configuration is [Ne] 4s¹ and Gallium's electron configurations is [Ne] 4s²3d¹⁰4p¹. Since both are in Period 4, they have the same number of core e⁻. Therefore, the shielding effect is the same.
However, since Gallium is element 31, it has 31 protons compared to Potassium, which is element 19 and has 19 protons. Gallium would have a greater Zeff than Potassium as it has more protons. Therefore, the FOA between the electrons and nucleus of Ga is much stronger than that of K. Thus, Ga requires <em>more</em> energy to overcome those FOA to remove the 4p¹ e⁻. Since K has less protons, it will have a smaller Zeff and thus less FOA between the e⁻ and nucleus, requiring <em>less</em> energy to remove the 4s¹ e⁻.
You are given the neutralization of acetic acid with sodium hydroxide. Also, you are given the k for acetic acid, which is 1.8 x 10⁻⁵. You are asked to find the<span> approximate value of the equilibrium constant, kn, for the neutralization. We will have a reaction of both acetic acid and sodium hydroxide.
CH</span>₃COOH + NaOH → CH₃COONa + H₂O
which comes from
CH₃COOH → CH₃COO⁻ + H⁺
H⁺ + OH⁻ → H₂O<span>
</span>The k for water is always 1.0 x 10¹⁴. The Ksp for the reaction will be
<span>
Ksp = [</span>CH₃COOH][H₂O]
Ksp = (1.8 x 10⁻⁵)(1.0 x 10¹⁴)
<span>Ksp = 1.8 x 10</span>⁹
Answer: Compound . Chemical reactions can divide elements into simpler substances, but they cannot separate elements into simpler substances. Physical or chemical characteristics of substances can be categorised.
Compounds and elements can be created from pure substances. A chemical reaction is required to break down pure substances (elements and compounds) into their component atoms or elements. This is known as the chemical separation process. Physical separation of pure substances is impossible.
Explanation:
What makes something pure substance?
One element or a small number of related compounds make up pure substances. Mixtures are assemblages of many components. Mixtures of two or more substances (or elements) that cannot be visually distinguished from one another are referred to as homogeneous mixtures.
What sort of compound would that be?
A substance made up of two or more components is called a compound. Table salt, water, and carbon dioxide are a few examples of compounds
To know more about pure substance visit ;
brainly.com/question/24462192
#SPF4
Answer:
TRUE
Explanation:
An Equipment grounding conductor are used to ground a non current-carrying metallic parts of any equipment. Its main function is to keep the equipment close to the ground potential as possible and is also allows a safer path for the ground-fault current to flow. If the equipment is grounded, all the excess current will go to the ground and will not damage the equipment.
Hence the answer is TRUE.
Answer:
The absorption and strength of the H-beta lines change with the temperature of the stellar surface, and because of this, one can find the temperature of the star from their absorption lines and strength. To better comprehend, let us look into the concept of the atom's atomic structure.
Atoms possess distinct energy levels and these levels of energy are constant, that is, the temperature has no influence on it. However, temperature possesses an influence on the electron numbers found within these levels of energy. Therefore, to generate an absorption line of hydrogen in the electromagnetic spectrum's visible band, the electrons are required to be present in the second energy level, that is when it captivates a photon.
Therefore, after captivating the photons the electrons jump from level 2 to level 4, which shows that there is an increase in the stellar surface temperature and at the same time one can witness a decline in the strength of the H-beta lines. In case, if the temperature of the surface increases too much, then one will witness no attachment of electron with the hydrogen atom and thus no H lines, and if the temperature of the surface becomes too low, then the electrons will stay in the ground state and no formation of H lines will take place in that condition too.
Hence, to generate a very robust H line, after captivating photons the majority of the electrons are required to stay in the second energy level.