Okay I did the math and I'm guessing around 18*C
Answer:
0.4 M
Explanation:
The process that takes place in an aqueous K₂HPO₄ solution is:
First we <u>calculate how many K₂HPO₄ moles are there in 200 mL of a 0.2 M solution</u>:
- 200 mL * 0.2 M = 40 mmol K₂HPO₄
Then we <u>convert K₂HPO₄ moles into K⁺ moles</u>, using the <em>stoichiometric coefficients</em> of the reaction above:
- 40 mmol K₂HPO₄ *
= 80 mmol K⁺
Finally we <em>divide the number of K⁺ moles by the volume</em>, to <u>calculate the molarity</u>:
- 80 mmol K⁺ / 200 mL = 0.4 M
Explanation:
It is known that the specific heat capacity of Liver
is 3.59 kJ
It is given that :
Initial temperature of Liver = Body temperature =
= 310 K
Final temperature of Liver = 180 K
Relation between heat energy, mass, and change in temperature is as follows.
Q =
Now, putting the given values into the above formula as follows.
Q = 
Q =
= 700.05 kJ
Therefore, we can conclude that amount of heat which must be removed from the liver is 700.05 kJ.
Answer:
The number of neutrons is entirely dependent on the Mass number of the particular atom. The standard mass for potassium is 39.
Potassium is element number 19, so it has 19 protons and 19 electrons in the neutral atom. It has therefore 39-19 = 20 Neutrons.
Explanation: