Answer:

Explanation:
Hello!
In this case, since the pH of the given metal is 10.15, we can compute the pOH as shown below:

Now, we compute the concentration of hydroxyl ions in solution:
![[OH^-]=10^{-pOH}=10^{-3.95}=1.41x10^{-4}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-pOH%7D%3D10%5E%7B-3.95%7D%3D1.41x10%5E%7B-4%7DM)
Now, since this hydroxide has the form MOH, we infer the concentration of OH- equals the concentration of M^+ at equilibrium, assuming the following ionization reaction:

Whose equilibrium expression is:
![Ksp=[M^+][OH^-]](https://tex.z-dn.net/?f=Ksp%3D%5BM%5E%2B%5D%5BOH%5E-%5D)
Therefore, the Ksp for the saturated solution turns out:

Best regards!
Answer:
See explanation
Explanation:
A limiting reactant is the reactant in a reaction that is done reacting first, because there are less moles of it than are needed for a full reaction with the other compound or compounds.
Hope this helps!
511.2 grams of chlorine gas consumed (with excess H-) when
1,342.0 kJ of energy is released from the system.
<h3>
</h3><h3>
What is an exothermic reaction?</h3>
In thermochemistry, an exothermic reaction is a "reaction for which the overall standard enthalpy change ΔH⚬ is negative."
Given that 1 mole of chlorine releases -184.6 energy.
Then, we have to find the number of moles of chlorine when 1,342.0 kJ of energy is released from the system.
So, calculating number of moles of chlorine.
Moles = 
Moles = 7.2 mole
Now, calculating number mass of chlorine.

Mass = 7.2 mole x 71 g/mole
Mass = 511.2 gram
Learn more about exothermic reaction here:
brainly.com/question/10373907
#SPJ1
The pressure of the gas : 1.1685 atm
<h3>Further explanation</h3>
In general, the gas equation can be written

where
P = pressure, atm
V = volume, liter
n = number of moles
R = gas constant = 0.08206 L.atm / mol K
T = temperature, Kelvin
n=moles=1.5
V=volumes = 30 L
T=temperature=285 K
The pressure :

Answer:
A. A disease stops an organ from doing its job and causes
imbalance in the body.
Explanation:
Disease and cellular malfunction can be caused in two basic ways: by deficiency or toxicity