Answer:
Velocity and speed both are continuously increasing.
Acceleration is constant.
Explanation:
Speed is defined as length of path covered by a body per unit time. Speed is a scalar quantity that consist of magnitude only and not direction.
Velocity is defined as the displacement per unit times. Displacement is the shortest distance between the two points. It is a vector quantity and hence has a direction in the direction of displacement along with its own magnitude.
- Both velocity and speed have same unit of measure which is meter per second in S.I. During <em>free fall</em> in the absence of any air resistance the velocity and speed both will be having a vertical downward direction with continuously increasing magnitude. Tough we are not concerned about the direction when discussing about speed but here both are equal since the motion is linear.
Acceleration is the rate of change in velocity of a body which is a vector quantity. For speed we are concerned about instantaneous acceleration since for a short period of time it may have a specific direction.
- During free fall the acceleration is of a body is equal to the acceleration due to gravity and constant when the height of fall is much lesser than the radius of the earth.
Answer:
Option (D) : The object slows down.
Answer:
3430000 J
Explanation:
The formula for potential energy is PE=mgh.
M being the mass, g being the force of gravity, and h being the height.
First thing you want to do is convert 250 kg to g (grams).
From there you get 25000g and you have to multiply that by 14m and 9.8m/s^2 (the force of gravity is constant, at least on earth).
Answer:
F = 1263.03 N
Explanation:s
given,
mass of the disk thrower = 100 Kg
mass of the disk = 2 Kg
angular speed of the disk = 4 rev/s
arm outstretched = 1 m
centripetal force of the disk in the circular path
F = m ω² r
ω = 4 x 2 x π
ω = 25.13 rad/s
F = m ω² r
F = 2 x 25.13² x 1
F = 1263.03 N
hence, centripetal force equal to the F = 1263.03 N
Answer:
The first law of thermodynamics, also known as Law of Conservation of Energy, states that energy can neither be created nor destroyed; energy can only be transferred or changed from one form to another. For example, turning on a light would seem to produce energy; however, it is electrical energy that is converted. Nothing happens to the energy. It does not change form, since energy has no form. ... If the energy was moving, it gets stored or re-transmitted elsewhere. Using energy means controlling its movement, rather than consuming it.