Answer:
The acceleration of
is 
Explanation:
From the question we are told that
The mass of first block is 
The angle of inclination of first block is 
The coefficient of kinetic friction of the first block is 
The mass of the second block is 
The angle of inclination of the second block is 
The coefficient of kinetic friction of the second block is 
The acceleration of
are same
The force acting on the mass
is mathematically represented as

=> 
Where T is the tension on the rope
The force acting on the mass
is mathematically represented as


At equilibrium

So

making a the subject of the formula

substituting values 
=> 
Answer: Pressure increases as the depth increases.
The average act on her during the deceleration is 4.47 meters per second.
<u>Explanation</u>:
<u>Given</u>:
youngster mass m = 50.0 kg
She steps off a 1.00 m high platform that is s = 1 meter
She comes to rest in the 10-meter second
<u>To Find</u>:
The average force and momentum
<u>Formulas</u>:
p = m * v
F * Δ t = Δ p
vf^2= vi^2+2as
<u>Solution</u>:
a = 9.8 m/s
vi = 0
vf^2= 0+2(9.8)(1)
vf^2 = 19.6
vf = 4.47 m/s .
Therefore the average force is 4.47 m/s.
Answer:
The diagram assigned B
explanation:
Check the direction of the two vectors, their resultant must be in the same direction.