Answer:
1.129×10⁻⁵ N
1.295 m
Explanation:
Take right to be positive. Sum of forces on the 31.8 kg mass:
∑F = GM₁m / r₁² − GM₂m / r₂²
∑F = G (M₁ − M₂) m / r²
∑F = (6.672×10⁻¹¹ N kg²/m²) (516 kg − 207 kg) (31.8 kg) / (0.482 m / 2)²
∑F = 1.129×10⁻⁵ N
Repeating the same steps, but this time ∑F = 0 and we're solving for r.
∑F = GM₁m / r₁² − GM₂m / r₂²
0 = GM₁m / r₁² − GM₂m / r₂²
GM₁m / r₁² = GM₂m / r₂²
M₁ / r₁² = M₂ / r₂²
516 / r² = 207 / (0.482 − r)²
516 (0.482 − r)² = 207 r²
516 (0.232 − 0.964 r + r²) = 207 r²
119.9 − 497.4 r + 516 r² = 207 r²
119.9 − 497.4 r + 309 r² = 0
r = 0.295 or 1.315
r can't be greater than 0.482, so r = 0.295 m.
Answer:
The best option is for the following option m = 15 [g] and V = 5 [cm³]
Explanation:
We have that the density of a body is defined as the ratio of mass to volume.

where:
Ro = density = 3 [g/cm³]
Now we must determine the densities with each of the given values.
<u>For m = 7 [g] and V = 2.3 [cm³]</u>
![Ro=7/2.3\\Ro=3.04 [g/cm^{3} ]](https://tex.z-dn.net/?f=Ro%3D7%2F2.3%5C%5CRo%3D3.04%20%5Bg%2Fcm%5E%7B3%7D%20%5D)
<u>For m = 10 [g] and V = 7 [cm³]</u>
<u />
<u />
<u>For m = 15 [g] and V = 5 [cm³]</u>
<u />
<u />
<u>For m = 21 [g] and V = 8 [cm³]</u>
<u />
<u />
Answer:
1225 J
Explanation:
The Gravitational potential energy (PEG) gained by a mass lifted above the ground is given by

where
m is the mass
g = 9.8 m/s^2 is the acceleration due to gravity
h is the height at which the object has been lifted
In this problem, we have
m = 250 kg
h = 0.5 m
So, the PE of the object is

The interstellar medium is the matter as well as the radiations that are found in the galaxies occupying the spaces between the star systems.
Interstellar medium is mainly composed of hydrogen that is followed by helium and trace amounts of nitrogen, oxygen and carbon (considered traces when compared to amount of hydrogen).
Therefor, the right choice is:
<span>A. Water, Carbon dioxide, and Hydrogen</span>
In reality we don't see the galaxy we see it's reflection .. the light hits or got emitted by the star travel all the way long to hit our eyes .. we see their reflection . everything around you that you see is it's reflection