1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DaniilM [7]
2 years ago
7

Which point on the standing wave is a node?

Physics
2 answers:
Digiron [165]2 years ago
8 0

Answer: it’s c

Explanation: ap3x

Evgesh-ka [11]2 years ago
5 0

Answer:

B is right on A.P.E.X

Explanation:

search up node and it'll show you

You might be interested in
Suppose you have two meter sticks, one made of steel and one made of invar (an alloy of iron and nickel), which are the same len
Mekhanik [1.2K]

Answer:

  • The difference in length for steel is 2.46 x 10⁻⁴ m
  • The difference in length for invar is 1.845 x 10⁻⁵ m

Explanation:

Given;

original length of steel, L₁ = 1.00 m

original length of invar, L₁ = 1.00 m

coefficients of volume expansion for steel, \gamma_{st.} =  3.6 × 10⁻⁵ /°C

coefficients of volume expansion for invar, \gamma_{in.} =  2.7 × 10⁻⁶ /°C

temperature rise in both meter stick, θ = 20.5°C

Difference in length, can be calculated as:

L₂ = L₁ (1 + αθ)

L₂  = L₁ + L₁αθ

L₂  - L₁ = L₁αθ

ΔL = L₁αθ

Where;

ΔL is difference in length

α is linear expansivity = \frac{\gamma}{3}

Difference in length, for steel at 20.5°C:

ΔL =  L₁αθ

Given;

L₁ = 1.00 m

θ = 20.5°C

\alpha = \frac{\gamma}{3} = \frac{3.6*10^{-5}}{3} = 1.2*10^{-5} /^oC

ΔL  = 1 x 1.2 x 10⁻⁵ x 20.5 = 2.46 x 10⁻⁴ m

Difference in length, for invar at 20.5°C:

ΔL =  L₁αθ

Given;

L₁ = 1.00 m

θ = 20.5°C

\alpha = \frac{\gamma}{3} = \frac{2.7*10^{-6}}{3} = 0.9*10^{-6}/^oC

ΔL  = 1 x 0.9 x 10⁻⁶ x 20.5 = 1.845 x 10⁻⁵ m

8 0
3 years ago
An iron railroad rail is 800 ft long when the temperature is 31°C. What is its length (in ft) when the temperature is −17°C?
natta225 [31]

Answer:

799.54 ft

Explanation:

Linear thermal expansion is:

ΔL = α L₀ ΔT

where ΔL is the change in length,

α is the linear thermal expansion coefficient,

L₀ is the original length,

and ΔT is the change in temperature.

Given:

α = 1.2×10⁻⁵ / °C

L₀ = 800 ft

ΔT = -17°C − 31°C = -48°C

Find: ΔL

ΔL = (1.2×10⁻⁵ / °C) (800 ft) (-48°C)

ΔL = -0.4608

Rounded to two significant figures, the change in length is -0.46 ft.

Therefore, the final length is approximately 800 ft − 0.46 ft = 799.54 ft.

7 0
3 years ago
Consider a system two point charges. One has charge +q at (x, y,z) -(a,0,0) and another of charge-q at (x, y, z) = (-a, 0,0). 5.
olga2289 [7]

Answer:

electricfield at (0,0,0) is Et = 2 k q / a²

Explanation:

For the first part see the diagram , the field lines start from the positive charge and reach the negative charge, notice that no line should cross, some lines go to infinity

For the second part we use that the electric field is a vector quantity and therefore we add the field of each charge, using the equation

     E = k q / r²

Point (0,0,0)

We calculate for the charge -q which is at a distance R = a

   E1 = k (-q) / a²

   E1 = - kq / a²

As the test charge is positive in the field it goes to the left, attractive force

We calculate for the charge that is also at R = a

    E2 = k q / a²

This field goes to the left, repulsive force

We find the total electric field

    Et = E1 + E2

    Et = kq / a² + kq / a²

    Et = 2 k q / a²

Point (0,0, R)

We use the same equations, but with another distance, for the charge -q the distance is R = R+a and for the charge + q the distance is R = R-a

     E1 = k q / (R + a)²

     E2 = kq / (R-a)²

     Et = kq [1 / (R + a)² + 1 / (R-a)²]

     Et= kq {[(R-a)² + (R + a)²] / [(R + a)² (R-a)²]}

     Et= kq {2 (R² + a²) / [(R + a)² (R-a)²]}

If we use the condition that  R> a we can despise in the patents "a"

     (R² + a²) = R² (1+ a² / R²) ≈ R²

     (R + a)² = R² (1 + a / R)² ≈ R²

     (R- a)²  = R² (1-a / R)² ≈ R²

Substituting in the total electric field

     Et = kq {2 R²) / [R²R²]}

     Et =kq 2 / R²

7 0
3 years ago
A person walks 60 meters in 1 minute. Then walks 30 meters in 2 minutes. What is thier average speed over the 3 minute walk?
Gennadij [26K]
Your answer would be 75 meters
8 0
3 years ago
Read 2 more answers
What is the magnitude of the velocity when the elastic potential energy is equal to the kinetic energy? (Assume that U=0 at equi
zhannawk [14.2K]

Answer:

Explanation:

General Equation of SHM is given by

x=A\cos \omega t

v=-A\omega \sin \omega t

where x=position of particle

A=maximum Amplitude

\omega =angular frequency

t=time

At any time Total Energy is the sum of kinetic Energy and Elastic potential Energy i.e. \frac{1}{2}kA^2

where k=spring constant

Potential Energy is given by U=\frac{1}{2}kx^2

also it is given that Potential Energy(U) is equal to Kinetic Energy(K)

Total Energy=K+U

Total=2U=2\times \frac{1}{2}kx^2

\frac{1}{2}kA^2=2\times \frac{1}{2}kx^2

x=\pm \frac{A}{\sqrt{2}}

at x=\frac{A}{\sqrt{2}}

velocity is v=\frac{A\omega}{\sqrt{2}}

6 0
3 years ago
Other questions:
  • Most savage races do not understand how the Galaxy works. Let's see how well you humans interpret a simple observation. The fact
    13·1 answer
  • During a car collision, the knee, thighbone, and hip can sustain a force no greater than 4000 N/ Forces that exceed this amount
    6·1 answer
  • Sunlight appears white. However, rainbows, sunburn and the ability to see colors tell a different story.Explain what each of the
    15·1 answer
  • At a race track, a car of mass 1150 kg crashes into a concrete wall at a speed of 85 m/s a. If the car comes to a stop when it h
    10·1 answer
  • 4 points
    10·1 answer
  • If you fwish to reduce the stress on high speed tires would you use large or small diameter tires ?
    14·1 answer
  • A Physics question regarding circuits and electricity.
    6·2 answers
  • Which phenomenon occurs when one wave is superimposed on another ?
    5·2 answers
  • Which point or points on the image below show constructive interference of light? *
    12·2 answers
  • Your bicycle has a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!