As the temperature of the lead and helium is the same. Thus the average kinetic energy is also the same for lead and helium.
Reason:
It is given that a 5.0-kg bar of lead is placed inside a 12-L chamber filled with helium gas. The temperature of the lead and helium is the same. It is required to compare the average kinetic energy of the lead atoms and helium atoms.
The average kinetic energy is calculated as,
.
Here K is the average kinetic energy, R is the gas constant, N is the Avogadro's number, and T is the temperature.
As the temperature is the same for both lead and helium. As a result, the average kinetic energy is also the same for lead and helium.
Learn more about average kinetic energy here,
brainly.com/question/1599923
#SPJ4
Complete Question:
Gauss's law:
Group of answer choices
A. can always be used to calculate the electric field.
B. relates the electric field throughout space to the charges distributed through that space.
C. only applies to point charges.
D. relates the electric field at points on a closed surface to the net charge enclosed by that surface.
E. relates the surface charge density to the electric field.
Answer:
D. relates the electric field at points on a closed surface to the net charge enclosed by that surface.
Explanation:
Gauss's law states that the total (net) flux of an electric field at points on a closed surface is directly proportional to the electric charge enclosed by that surface.
This ultimately implies that, Gauss's law relates the electric field at points on a closed surface to the net charge enclosed by that surface.
This electromagnetism law was formulated in 1835 by famous scientists known as Carl Friedrich Gauss.
Mathematically, Gauss's law is given by this formula;
ϕ = (Q/ϵ0)
Where;
ϕ is the electric flux.
Q represents the total charge in an enclosed surface.
ε0 is the electric constant.
Answer:
Efficiency = 52%
Explanation:
Given:
First stage
heat absorbed, Q₁ at temperature T₁ = 500 K
Heat released, Q₂ at temperature T₂ = 430 K
and the work done is W₁
Second stage
Heat released, Q₂ at temperature T₂ = 430 K
Heat released, Q₃ at temperature T₃ = 240 K
and the work done is W₂
Total work done, W = W₁ + W₂
Now,
The efficiency is given as:

or
Work done = change in heat
thus,
W₁ = Q₁ - Q₂
W₂ = Q₂ - Q₃
Thus,

or

or

also,

or

thus,

thus,

or

or
Efficiency = 52%
Answer:
Decreases by
times
Explanation:
The intensity of a sound is defined as the energy of the sound that is flowing in an unit time through the unit area which is in the direction that is perpendicular to the direction of the sound waves movement.
The intensity of energy is described by the inverse square law. It states that the intensity varies inversely with the distance square of the distance.
In other words, the sound intensity decreases as inversely proportional to the squared of the distance. i.e. 
In the context when the distance was 3 m, the intensity of the sound was = 
But when the distance became 6 cm or 0.06 m, the sound intensity decreases by = 
=
times
Convection, because it is the process of heat transfer from one location to the next by the movement of fluids. The moving fluid carries energy within it.