mitochondria
im not 100% sure but it makes sense
Answer : The ratio of the concentration of substance A inside the cell to the concentration outside is, 296.2
Explanation :
The relation between the equilibrium constant and standard Gibbs free energy is:
![\Delta G^o=-RT\times \ln Q\\\\\Delta G^o=-RT\times \ln (\frac{[A]_{inside}}{[A]_{outside}})](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo%3D-RT%5Ctimes%20%5Cln%20Q%5C%5C%5C%5C%5CDelta%20G%5Eo%3D-RT%5Ctimes%20%5Cln%20%28%5Cfrac%7B%5BA%5D_%7Binside%7D%7D%7B%5BA%5D_%7Boutside%7D%7D%29)
where,
= standard Gibbs free energy = -14.1 kJ/mol
R = gas constant = 8.314 J/K.mol
T = temperature = 
Q = reaction quotient
= concentration inside the cell
= concentration outside the cell
Now put all the given values in the above formula, we get:
![-14.1\times 10^3J/mol =-(8.314J/K.mol)\times (298K)\times \ln (\frac{[A]_{inside}}{[A]_{outside}})](https://tex.z-dn.net/?f=-14.1%5Ctimes%2010%5E3J%2Fmol%20%3D-%288.314J%2FK.mol%29%5Ctimes%20%28298K%29%5Ctimes%20%5Cln%20%28%5Cfrac%7B%5BA%5D_%7Binside%7D%7D%7B%5BA%5D_%7Boutside%7D%7D%29)
![\frac{[A]_{inside}}{[A]_{outside}}=296.2](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5D_%7Binside%7D%7D%7B%5BA%5D_%7Boutside%7D%7D%3D296.2)
Thus, the ratio of the concentration of substance A inside the cell to the concentration outside is, 296.2
Answer:
2) Gas molecules do not have preferred direction of motion, their motion is completely random. 3) Gas molecules travels in straight line. 4) The time interval of collision between any two gas molecules is very small. 5) The collision between gas molecules and the walls of container is perfectly elastic.
Answer:
You multiply the 3 numbers together to get your volume, in this case it would be 4058.488 cm^3 (cm cubed)
so
V: 4058.488cm^3 ( round up to 4058.5 for convenience)
M: 27579
D: ?
So we divide mass by the volume to get density, which is
27579 / 4058.5 = ~6.79536 (can round up to 7 or 6.8)
This graph can help a lot, so maybe try and memorize it, hope I helped.
Procaryotic structural components consist of macromolecules such as DNA, RNA, proteins, polysaccharides, phospholipids, or some combination thereof. The macromolecules are made up of primary subunits such as nucleotides, amino acids and sugars (Table 1). It is the sequence in which the subunits are put together in the macromolecule, called the primary structure, that determines many of the properties that the macromolecule will have. Thus, the genetic code is determined by specific nuleotide base sequences in chromosomal DNA; the amino acid sequence in a protein determines the properties and function of the protein; and sequence of sugars in bacterial lipopolysaccharides determines unique cell wall properties for pathogens. The primary structure of a macromolecule will drive its function, and differences within the primary structure of biological macromolecules accounts for the immense diversity of life.