Answer:
You never know if the medication could make you worse
Explanation:
Answer:
Average speed = 1.2 m/s
Average velocity = 0.4 m/s
Explanation:
Average speed = total distance/total time
Average speed = (40 + 20)/(40 + 10)
Average speed = 60/50
Average speed = 1.2 m/s
Average velocity = displacement/time
Now, she ran 40 m south and ran 20 m back north which is in the direction of where she began the journey.
Thus;
Displacement = 40 - 20 = 20 m
Average velocity = 20/50 = 0.4 m/s
Answer:
The percentage of its mechanical energy does the ball lose with each bounce is 23 %
Explanation:
Given data,
The tennis ball is released from the height, h = 4 m
After the third bounce it reaches height, h' = 183 cm
= 1.83 m
The total mechanical energy of the ball is equal to its maximum P.E
E = mgh
= 4 mg
At height h', the P.E becomes
E' = mgh'
= 1.83 mg
The percentage of change in energy the ball retains to its original energy,
ΔE % = 45 %
The ball retains only the 45% of its original energy after 3 bounces.
Therefore, the energy retains in each bounce is
∛ (0.45) = 0.77
The ball retains only the 77% of its original energy.
The energy lost to the floor is,
E = 100 - 77
= 23 %
Hence, the percentage of its mechanical energy does the ball lose with each bounce is 23 %
Answer:
Usually an eletric shock. You can be left with numbness and MAYBE problems with your eyes.
Explanation:
Answer:
Electric force is a phenomenon which is experienced by a point charge due to its presence in an electric field. Electric force fields indicate the strength of the electric force that will be experienced, and also the direction of the force. The strength is shown by the closeness of the electric field lines and the direction is shown by the direction of the lines. Therefore, force fields are necessary in describing electric force.