The planetary temperature energy balance is obtained by radiating back the absorbed radiation energy from outer-space, by the planet and thus acquiring thermal equilibrium.
What is the process of attaining thermal equilibrium by Earth?
The Stefan-Boltzmann law states that the more the temperature a planet has, the more it will radiate out to reach thermal equilibrium.
We know that outer space contains large masses of radiative energy freely distributed in its vast expanse. A small fraction of this energy is absorbed by the Earth through the atmosphere, surface land, clouds etc.
Now, radiative balance is achieved when a planet's surface continuously warms up until it reaches its peak at which point the same amount of absorbed energy can then be radiated back to space. The relative amount of energy radiated back by a planet is dependent upon the size of the planet.
A colder planet relatively absorbs lower amount of radiation energy from space. In some time, as the planet heats up enough, the energy is radiated back to the space attaining thermal equilibrium.
Learn more about Stefan-Boltzmann law here:
<u>brainly.com/question/14919749</u>
#SPJ4
Answer:
O D.
Explanation:
Physics has an aspect that deals with the study of energy
Wave interference is the phenomenon that occurs when two waves meet while traveling along the same medium. The interference of waves causes the medium to take on a shape that results from the net effect of the two individualwaves upon the particles of the medium.Hope this help!
Answer:

Explanation:
We are given that
Surface area of membrane=
Thickness of membrane=
Assume that membrane behave like a parallel plate capacitor.
Dielectric constant=5.9
Potential difference between surfaces=85.9 mV
We have to find the charge resides on the outer surface of membrane.
Capacitance between parallel plate capacitor is given by

Substitute the values then we get
Capacitance between parallel plate capacitor=

V=


Hence, the charge resides on the outer surface=
Answer:
Amorphous solids are composed of atoms or molecules that are in no particular order. Each particle is in a particular spot, but the particles are in no organized pattern. Examples include rubber and wax. Crystalline solids have a very orderly, three-dimensional arrangement of atoms or molecules
Explanation: