The velocity when function p(t)=11 is 8 .
According to the question
The position of a car at time t represented by function :
Now,
When function p(t) = 11 , t will be
11 = t²+2t-4
0 = t² + 2t - 15
or
t² +2t-15 = 0
t² +(5-3)t-15 = 0
t² +5t-3t-15 = 0
t(t+5)-3(t+5) = 0
(t-3)(t+5) = 0
t = 3 , -5
as t cannot be -ve as given ( t≥0)
so,
t = 3
Now,
the velocity when p(t)=11
As we know velocity =
therefore to get the value of velocity from function p(t)
we have to differentiate the function with respect to time
v(t) = 2t + 2
where v(t) = velocity at that time
as t = 3 for p(t)=11
so ,
v(t) = 2t + 2
v(t) = 2*3 + 2
v(t) = 8
Hence, the velocity when function p(t)=11 is 8 .
To know more about function here:
brainly.com/question/12431044
#SPJ4
Answer:
63.9 m/s
Explanation:
Parameters given:
Mass of small car, m = 1200 kg
Mass of SUV, M = 4000 kg
Speed of SUV, V = 35 m/s
Their kinetic energy of the small car is equal to the kinetic energy of the SUV, hence:
0.5 * m * v² = 0.5 * M * V²
=> 0.5 * 1200 * v² = 0.5 * 4000 * 35²
600 * v² = 2450000
v² = 2450000/600
v² = 4083.3
=> v = 63.9 m/s
The speed of the small car is 63.9 m/s.
Answer:
The total elongation for the tension member is of 0.25mm
Explanation:
Assuming that material is under a linear deformation then the relation between the stress and the specific elongation is given as:
(1)
Where E is the modulus of elasticity, σ the stress and ε the specific deformation. Also, the total longitudinal elongation can be expressed as:
(2)
Here L is the member extension and δL the change total longitudinal elongation.
Now if the stress is found then the deformation can be calculated by solving the stress-deformation equation (1). The stress applied sigama is computed dividing the axial load P by the cross-sectional area A:
Solving for epsilon and replacing the calculated value for the stress and the value for the modulus of elasticity:




Finally introducing the specific deformation and the longitudinal extension in the equation of total elongation (2):
Answer:
The time depends on the distance that they have to travel

Explanation:
The only horizontal force exerts over the car and you, it is the force that your friend is applied
Newton's Second Law of Motion defines the relationship between acceleration, force, and mass, thus

550 = 1430a
a = 0.3846 m/s2
The car and you have a motion under constant acceleration, then theirs position to a time-based is:

By the initial conditions


The time depends on the distance that they have to travel
Answer:
I don't really know much about the whole stars thing, but I've written a lot of paragraphs in science
Explanation:
Remember:
- A paragraph should be in CER formation: Claim (hypothesis/discovery), Evidence, and Reasoning
- Your reasoning should never start with I believe or I think, your reasoning and evidence are 100% fact based
- The actual hypothesis should only be 1-2 sentences and be straight to the point
Include:
- for your hypothesis, keywords relating to your subject, I'm assuming for your topic you should include things like marking, telescope, stars, etc.
- why you believe your hypothesis is true
- so use prior knowledge to justify your hypothesis