Explanation:
Given that,
The mean kinetic energy of the emitted electron,
(a) The relation between the kinetic energy and the De Broglie wavelength is given by :
(b) According to Bragg's law,
n = 1
For nickel,
As the angle made is very small, so such an electron is not useful in a Davisson-Germer type scattering experiment.
Answer:
3, 4, 2
Explanation:
I can't see the final ones.
Answer:
32.3 m/s
Explanation:
The ball follows a projectile motion, where:
- The horizontal motion is a uniform motion at costant speed
- The vertical motion is a free fall motion (constant acceleration)
We start by analyzing the horizontal motion. The ball travels horizontally at constant speed of
and it covers a distance of
d = 165 m
So, the total time of flight of the ball is
In order to find the vertical velocity of the ball, we have now to analyze its vertical motion.
The vertical motion is a free-fall motion, so the ball is falling at constant acceleration; therefore we can use the following suvat equation:
where
is the vertical velocity at time t
is the initial vertical velocity
is the acceleration of gravity (taking downward as positive direction)
Substituting t = 3.3 s (the time of flight), we find the final vertical velocity of the ball:
Answer:
The strongest lines are at 337.1 nm wavelength in the ultraviolet. Other lines have been reported at 357.6 nm, also ultraviolet. This information refers to the second positive system of molecular nitrogen, which is by far the most common.
Explanation: