Answer:
λ = 482.05 nm
Explanation:
The diffraction phenomenon and the diffraction grating is described by the expression
d sin θ = m λ
where d is the distance between two consecutive slits, λ the wavelength and m an integer representing the order of diffraction
in this case they indicate the distance between slits, the angle and the order of diffraction
λ =
d sin θ / m
let's calculate
λ = 1.00 10⁻⁶ sin 74.6 / 2
λ = 4.82048 10⁻⁷ m
Let's reduce to nm
λ = 4.82048 10⁻⁷ m (10⁹ nm / 1 m)
λ = 482.05 nm
Answer: An ideal ammeter would have zero resistance, because to ensure that, there is no voltage drop due to the internal resistance. Similarly, an ideal voltmeter would have infinite resistance, because to ensure that there is no current is drawn by the voltmeter.
Explanation: To find the answer, we need to know about the Ammeter and Voltmeter.
<h3>What is an ammeter?</h3>
- An ammeter is a device, that can be used to measure the electric current flows through a circuit in amperes.
- An ideal ammeter would have zero resistance, because to ensure that, there is no voltage drop due to the internal resistance when it is connected in series to measure the current.
<h3>What is voltmeter?</h3>
- A voltmeter is a device, that can be used to measure the electric potential difference generated between the terminals of an electric circuit in volts.
- An ideal voltmeter would have infinite resistance, because to ensure that there is no current is drawn by the voltmeter, when it is connected in parallel to measure the voltage.
Thus, we can conclude that, an ideal ammeter would have zero resistance, because to ensure that, there is no voltage drop due to the internal resistance. Similarly, an ideal voltmeter would have infinite resistance, because to ensure that there is no current is drawn by the voltmeter.
Learn more about the ammeter and voltmeter here:
brainly.com/question/28044897
#SPJ4
Answer:
To determine the minimum blade length, add 1" to the workpiece thickness. One type of material, and some materials can be cut by more than one type of blade. No matter the material, there's likely a jigsaw blade designed specifically for. Armed with the right blade, follow these pointers to make your work go (and cut) .
Explanation:
Answer:
some common devices that use current carrying conductors and magnetic fields are electric motor electric generator loudspeakers microphones and measuring instruments like galvanometer ammeter and voltmeter
Answer: a. F doubled
b. F reduced by one-quarter i.e
1/4*(F)
c. 1/9*(F)
d. F increased by a factor of 4 i.e 4*F
e. F reduces 3/4*(F)
Explanation: Coulombs law states the force F of attraction/repulsion experience by two charges qA and qB is directly proportional to thier product and inversely proportional to the square of distance d between them. That is
F = k*(qA*qB)/d²
a. If qA is doubled therefore the force is doubled since they are directly proportional.
b. If qA and qB are half, that means thier new product would be qA/2)*qB/2 =qA*qB/4
Which means the product of charge is divided by 4 so the force would be divided by 4 too since they are directly proportional.
c. If d is tripped that is multiplied by 3. From the formula new d would be (3*d)²=9d² but force is inversely proportional to d² so instead of multiplying by 9 the force will be divided by 9
d. If d is cut into half that is divided by 2. The new d would be (d/2)²=d²/4. So d² is divided by 4 so the force would be multiplied by 4
e. If qA is tripled that is multiplied by 3. F would be multiplied by 3 also, if at the same time d is doubled (2*d)²= 4*d² . Force would be divided by 4 at same time. So we have,
3/4*F