Answer:
Temperature or thermal energy.
Explanation:
Conduction involves the transfer of electric charge or thermal energy due to the movement of particles. When the conduction relates to electric charge, it is known as electrical conduction while when it relates to thermal energy, it is known as heat conduction.
In the process of heat conduction, thermal energy is usually transferred from fast moving particles to slow moving particles during the collision of these particles. Also, thermal energy is typically transferred between objects that has different degrees of temperature and materials (particles) that are directly in contact with each other but differ in their ability to accept or give up electrons.
Hence, the temperature or thermal energy of matter depends on how much the particles are moving, which depends on the amount of kinetic energy the particles possess.
a. It occures in binary systems where one of them is a whitedwarf
Answer:
Option C is the correct answer.
Explanation:
Considering vertical motion of ball:-
Initial velocity, u = 2 m/s
Acceleration , a = 9.81 m/s²
Displacement, s = 40 m
We have equation of motion s= ut + 0.5 at²
Substituting
s= ut + 0.5 at²
40 = 2 x t + 0.5 x 9.81 x t²
4.9t² + 2t - 40 = 0
t = 2.66 s or t = -3.06 s
So, time is 2.66 s.
Option C is the correct answer.
Well evaporation<span> is a gradual vaporization of a liquid on the surface whereas </span>boiling<span> is a rapid vaporization of a liquid only when it is heated to its </span>boiling<span> point. </span>
Answer:
d. equal to one-fourth the acceleration at the surface of the asteroid.
Explanation:
The explanation is attached as a picture with this answer
Newton's law of universal gravitation is being used to compare the accelerations at the surface and at the top of the ball's path.
as it can be seen in the explanation that the proportional form of the equation is used because we do not need to necessarily use to final form with "G" for comparison calculations.
As per the given scenario only difference between the two points in the gravitational field is the distance from center of the spherical asteroid, i.e. r.
It is taken 2r for the top is the path. hence we obtain (1/4)g as our answer.