<h2>Answer: The more precisely you know the position of a particle, the less well you can know the momentum of the particle
</h2>
The Heisenberg uncertainty principle was enunciated in 1927. It postulates that the fact that each particle has a wave associated with it, imposes restrictions on the ability to determine <u>its position and speed at the same time. </u>
In other words:
<em>It is impossible to measure simultaneously (according to quantum physics), and with absolute precision, the value of the position and the momentum (linear momentum) of a particle.</em>
<h2>So, the greater certainty is seeked in determining the position of a particle, the less is known its linear momentum and, therefore, its mass and velocity. </h2><h2 />
In fact, even with the most precise devices, the uncertainty in the measurement continues to exist. Thus, in general, the greater the precision in the measurement of one of these magnitudes, the greater the uncertainty in the measure of the other complementary variable.
Therefore the correct option is C.
Answer:
a. 2 Hz b. 0.5 cycles c . 0 V
Explanation:
a. What is period of armature?
Since it takes the armature 30 seconds to complete 60 cycles, and frequency f = number of cycles/ time = 60 cycles/ 30 s = 2 cycles/ s = 2 Hz
b. How many cycles are completed in T/2 sec?
The period, T = 1/f = 1/2 Hz = 0.5 s.
So, it takes 0.5 s to complete 1 cycles. At t = T/2 = 0.5/2 = 0.25 s,
Since it takes 0.5 s to complete 1 cycle, then the number of cycles it completes in 0.25 s is 0.25/0.5 = 0.5 cycles.
c. What is the maximum emf produced when the armature completes 180° rotation?
Since the emf E = E₀sinθ and when θ = 180°, sinθ = sin180° = 0
E = E₀ × 0 = 0
E = 0
So, at 180° rotation, the maximum emf produced is 0 V.
Answer:
α = 3×10^-5 K^-1
Explanation:
let ΔL be the change in length of the bar of metal, ΔT be the change in temperature, L be the original length of the metal bar and let α be the coefficient of linear expansion.
then, the coefficient of linear expansion is given by:
α = ΔL/(ΔT×L)
= (0.3×10^-3)/(100)(100×10^-3)
= 3×10^-5 K^-1
Therefore, the coefficient of linear expansion is 3×10^-5 K^-1