Answer:
See explanation below
Explanation:
In this case, you want to know if you put an object between these forces, which direction would go.
To know this, we need to calculate the moment of an object, which is defined as the product of a force and it's distance. In other words:
M = F * d (1)
And, in order to reach equilibrium the force will exert a direction in clockwise or anticlosewise, and these moments, should be even:
anticlockwise moment = clockwise moment.
The clockwise would be the forces to the right, and anticlock would the only force to the left of the axle.
Clockwise moment = (10 * 0.8) + (25 * 2.6) = 73 Ns
Anticlockwise moment = 34 * 3.5 = 119 Ns.
As we can see, the moment in the anticlockwise is higher than the actual clockwise moment, therefore, we can assume that the object will move anticlockwise, or simply move to the left.
Hope this helps
Answer:
Explanation:
mass of elephant, m1 = 5240 kg
mass of ball, m2 = 0.150 kg
initial velocity of elephant, u1 = - 4.55 m/s
initial velocity of ball, u2 = 7.81 m/s
Let the final velocity of ball is v2.
Use the formula of collision


v2 = - 16.9 m/s
The negative sign shows that the ball bounces back towards you.
(b) It is clear that the velocity of ball increases and hence the kinetic energy of the ball increases. This gain in energy is due to the energy from elephant.
1. When sewage treatment plants flood or debris reaches reservoirs and streams, the quality of the water is affected.
2. Storm surges cause beaches to shift and alter shape.
3. During flash floods, riverbanks erode.