Answer:
a)= 0.025602u
b) = 23.848MeV
c) N = 1.546 × 10¹³
Explanation:
The reaction is
²₁H + ²₁H ⇄ ⁴₂H + Q
a) The mass difference is
Δm = 2m(²₁H) - m (⁴₂H)
= 2(2.014102u) - 4.002602u
= 0.025602u
b) Use the Einstein mass energy relation ship
The enegy release is the mass difference times 931.5MeV/U
E = (0.025602) (931.5)
= 23.848MeV
c)
the number of reaction need per seconds is
N = Q/E
= 59W/ 23.848MeV

N = 1.546 × 10¹³
Answer: they could get a piece of the coral and run tests on it
Explanation:
Answer:
Explanation:
A proton and electron are moving in the positive x direction, this shows that their velocity will be in the positive x direction
V = v•i
Magnetic field Is the positive z direction
B = B•k
A. For proton.
Proton has a positive charge of q
Direction of force on proton
Force is given as
F = q(v×B)
F = q( v•i × B•k)
F = qvB (i×k)
From vectors i×k = -j
F = -qvB •j
Then, for the positive charge, the force will act in the negative direction of the y-axis
B. For electron
Electron has a negative of -q
Direction of force on proton
Force is given as
F = q(v×B)
F = -q( v•i × B•k)
F = -qvB (i×k)
From vectors i×k = -j
F = --qvB •j
F = qvB •j
Then, for the negative charge, the force will act in the positive direction of the y-axis
Answer:
6.39 J of energy is needed to generate 0.71 * 10⁻¹⁶ kg mass
Explanation:
According to the Equation: E = mc²
where the mass, m = 0.71 * 10⁻¹⁶ kg
the speed of light, c = 3 * 10⁸ m/s
The amount of energy needed to generate a mass of 0.71 * 10⁻¹⁶ kg is calculated as follows:
E = (0.71 * 10⁻¹⁶) (3 * 10⁸)²
E = 0.71 * 10⁻¹⁶ * 9 * 10¹⁶
E = 0.71 * 9
E = 6.39 J
Nearly equal the output work is greater than the input work because of friction.All machines use some amount of input work to overcome friction.The only way to increase the work output is to increase the work you put into the machine.You cannot get more work out of a machine than you put into it.