Answer: a) 6.67cm/s b) 1/2
Explanation:
According to law of conservation of momentum, the momentum of the bodies before collision is equal to the momentum of the bodies after collision. Since the second body was initially at rest this means the initial velocity of the body is "zero".
Let m1 and m2 be the masses of the bodies
u1 and u2 be their velocities respectively
m1 = 5.0g m2 = 10.0g u1 = 20.0cm/s u2 = 0cm/s
Since momentum = mass × velocity
The conservation of momentum of the body will be
m1u1 + m2u2 = (m1+m2)v
Note that the body will move with a common velocity (v) after collision which will serve as the velocity of each object after collision.
5(20) + 10(0) = (5+10)v
100 + 0 = 15v
v = 100/15
v = 6.67cm/s
Therefore the velocity of each object after the collision is 6.67cm/s
b) kinectic energy of the 10.0g object will be 1/2MV²
= 1/2×10×6.67²
= 222.44Joules
kinectic energy of the 5.0g object will be 1/2MV²
= 1/2×5×6.67²
= 222.44Joules
= 111.22Joules
Fraction of the initial kinetic transferred to the 10g object will be
111.22/222.44
= 1/2
Explanation:
It is given that,
Diameter of the peach pie, d = 9 inches
Radius of the pie, r = 4.5 inches
The tray is rotated such that the rim of the pie plate moves through a distance of 183 inches, d = 183 inches
Let
is the angular distance that the pie plate has moved through.
It is given by :


Since, 1 radian = 57.29 degrees

Since, 1 radian = 0.159155 revolution

Hence, this is the required solution.
The average speed is 52km
An excited atom can return to its ground state by absorbing electromagnetic radiation is false about the electromagnetic radiation.
Option B
<u>Explanation</u>:
In the scope of modern quantum theory, the term Electromagnetic radiation is identified as the movement of photons through space. Almost all the sources of energy that we utilize today such as coal, oil, etc are a product of electromagnetic radiation which was absorbed from the sun millions of years ago.
Various properties of electromagnetic radiations are a directly proportional relationship between the energy and the frequency, Inverse proportionality between frequency and the wavelength, etc. Hence, we can conclude that an "excited atom" can never return to its ground state by assimilating electromagnetic radiation and the 2nd statement is false.
Answer: Here is the complete question:
A small 12.00g plastic ball is suspended by a string in a uniform, horizontal electric field with a magnitude of 103 N/C. If the ball is in equilibrium when the string makes a 30 angle with the vertical, what is the net charge on the ball?
Answer: The charge on the ball is 5.71 × 10^-4 C
Explanation:
Please see the attachments below