1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexdok [17]
2 years ago
8

The magnitude of displacements a and b are 3m and 4m, respectively, c=a+b. What is the magnitude of c if the angel between a and

b is (a) 0 and (b) is 180?
Physics
1 answer:
AysviL [449]2 years ago
4 0

Answer:

(a) 7 m

(b) 1  m

Explanation:

Given:

The magnitude of displacement  vector 'a' is 3 m

The magnitude of displacement vector 'b' is 4 m.

The vector 'c' is the vector sum of vectors 'a' and 'b'.

(a)

Now, when the angle between the vectors is 0°, it means that the vectors are in the same direction. When vectors are in the same direction, then their resultant magnitude is simply the sum of their magnitudes.

So, magnitude of 'c' when 'a' and 'b' are in same direction is given as:

|\overrightarrow c|=|\overrightarrow a|+|\overrightarrow b|\\\\|\overrightarrow c|=3 + 4 = 7\ m

Therefore, the magnitude of vector 'c' is 7 m when angle between 'a' and 'b' is 0°.

(b)

When the angle between the vectors is 180°, it means that the vectors are exactly in the opposite direction. When the vectors are in opposite direction, then their resultant magnitude is the subtraction of their magnitudes.

So, magnitude of 'c' when 'a' and 'b' are in opposite direction is:

|\overrightarrow c|=||\overrightarrow a|-|\overrightarrow b||\\\\|\overrightarrow c|=|3 - 4| = 1\ m

Therefore, the magnitude of vector 'c' is 1 m when angle between 'a' and 'b' is 180°.

You might be interested in
Identify the physical property of a material that is NOT a good conductor of heat.
EleoNora [17]

Answer:D.no of the above

Explanation:get right with Christ

4 0
3 years ago
Two samples of water are mixed together.
horrorfan [7]

Let the cold water go up x degrees.

Let the hot water go down 100 - x degrees.

The formula for heat exchange is m*c*delta t

Givens

Ice

deltat = x

m = 0.50 kg

c = 4.18

Hot water

deltat = 100 - x

m = 1.5 kg

c = 4.18

Formula

The heat up = heat down

0.50 * c * x = 1.5 * c * (100 - x)            Divide both sides by c

Solution

0.50 *x = 1.5*(100 - x)                          Remove the brackets.

0.5x = 150 - 1.5x                                  Add 1.5x to both sides.

0.5x + 1.5x = 150 - 1.5x + 1.5x             Combine like terms  

2x = 150                                               Divide by 2

x = 75

Answer

A

6 0
3 years ago
An enormous thunderstorm covers Dallas-Ft. Worth. Your best friend Clark is a storm chaser and heads to the center of the storm
Rus_ich [418]

Answer:

t = 0.437 s

Explanation:

The speed of sound is a constant that is worth v = 343 m / s

           v = d / t

            t = d / v

the time it takes for the sound to reach Clark at d = 150 m is

           t = 150/343

           t = 0.437 s

This same sound takes much longer to reach you

          t₂ = 127 10³/343

          t₂ = 370 s

6 0
3 years ago
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
3 years ago
HELPPPPP it’s due in 10 minutes
iris [78.8K]

Answer:

A.c

Explanation:

The chromosphere is above the photosphere, the visible "surface" of the Sun. It lies below the solar corona, the Sun's upper atmosphere, which extends many thousands of kilometers above the chromosphere into space. The plasma (electrically charged gas) in the chromosphere has a very low density.

In basic terms it is the 2nd one out from the core.

7 0
3 years ago
Other questions:
  • A 62-kg man standing on a scale in an elevator notes that as the elevator rises, the scale reads 821 N. What is the acceleration
    7·2 answers
  • A person pushes a refrigerator across a horizontal floor. The mass of the refrigerator is 110 kg, the coefficient of static fric
    12·1 answer
  • A severe storm on January 10, 1992, caused a cargo ship near the Aleutian Islands to spill 29,000 rubber ducks and other bath to
    6·1 answer
  • If feathers have a density of 0.500 lbs/ft^3, what volume in ft^3 will 8.0 lbs of feathers occupy?
    12·1 answer
  • A hot-water radiator has a surface temperatue of 80 o C and a surface area of 2 m2 . Treating it as a blackbody, find the net ra
    6·1 answer
  • It takes 20 Joules of Work to push 4 coulombs of charges Across the filament of a bulb.'find the potential difference Across the
    11·1 answer
  • True or False. Can Metalloids conduct electricity under certain conditions?
    15·1 answer
  • Which of The following is the best example of water changing from a liquid to gas
    15·1 answer
  • What type of device is a coal-fired power plant?
    7·2 answers
  • An ambulance traveled on roads from the hospital 14 kilometers east, then 16 kilometers north to reach an accident. If the ambul
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!