We can solve the problem by using Ohm's law, which states that an Ohmic conductor the following relationship holds:

where

is the potential difference applied to the resistor
I is the current flowing through it
R is the resistance
In our problem, I=4.00 A and

, so the potential difference is
Answer:
v=0.60 m/s
Explanation:
Given that
m ₁= 390 kg ,u ₁= 0.5 m/s
m₂ = 250 kg ,u₂ = 0.76 m/s
As we know that if there is no any external force on the system the total linear momentum of the system will be conserve.
Pi = Pf
m ₁u ₁+m₂u₂ = (m₂ + m ₁ ) v
Now putting the values in the above equation
390 x 0.5 + 250 x 0.76 = (390 + 250 ) v

v=0.60 m/s
Therefore the velocity of the system will be 0.6 m/s.
Answer: V = 15 m/s
Explanation:
As stationary speed gun emits a microwave beam at 2.10*10^10Hz. It reflects off a car and returns 1030 Hz higher. The observed frequency the car will be experiencing will be addition of the two frequency. That is,
F = 2.1 × 10^10 + 1030 = 2.100000103×10^10Hz
Using doppler effect formula
F = C/ ( C - V) × f
Where
F = observed frequency
f = source frequency
C = speed of light = 3×10^8
V = speed of the car
Substitute all the parameters into the formula
2.100000103×10^10 = 3×10^8/(3×10^8 -V) × 2.1×10^10
2.100000103×10^10/2.1×10^10 = 3×108/(3×10^8 - V)
1.000000049 = 3×10^8/(3×10^8 - V)
Cross multiply
300000014.7 - 1.000000049V = 3×10^8
Collect the like terms
1.000000049V = 14.71429
Make V the subject of formula
V = 14.71429/1.000000049
V = 14.7 m/s
The speed of the car is 15 m/s approximately.
Answer:
23.49m
Explanation:
Distance = velocity x time
8.7 x 2.7 = 23.49m
Hi there!
We can use the work-energy theorem to solve.
Recall that:

The initial kinetic energy is 0 J because the crate begins from rest, so we can plug in the given values for mass and final velocity:

Now, we can define work:

Now, plug in the values:

Solve for theta:
