Answer:
Explanation:
f = 50.0 Hz, L = 0.650 H, π = 3.14
C = 4.80 μF, R = 301 Ω resistor. V = 120volts
XL = wL = 2πfL
= 2×3.14×50* 0.650
= 204.1 Ohm
Xc= 1/wC
Xc = 1/2πfC
Xc = 1/2×3.14×50×4.80μF
= 1/0.0015072
= 663.48Ohms
1. Total impedance, Z = sqrt (R^2 + (Xc-XL)^2)= √ 301^2+ (663.48Ohms - 204.1 Ohm)^2
√ 90601 + (459.38)^2
√ 90601+211029.98
√ 301630.9844
= 549.209
Z = 549.21Ohms
2. I=V/Z = 120/ 549.21Ohms =0.218Ampere
3. P=V×I = 120* 0.218 = 26.16Watt
Note that
I rms = Vrms/Xc
= 120/663.48Ohms
= 0.18086A
4. I(max) = I(rms) × √2
= 0.18086A × 1.4142
= 0.2557
= 0.256A
5. V=I(max) * XL
= 0.256A ×204.1
=52.2496
= 52.250volts
6. V=I(max) × Xc
= 0.256A × 663.48Ohms
= 169.85volts
7. Xc=XL
1/2πfC = 2πfL
1/2πfC = 2πf× 0.650
1/2×3.14×f×4.80μF = 2×3.14×f×0.650
1/6.28×f×4.8×10^-6 = 4.082f
1/0.000030144× f = 4.082×f
1 = 0.000030144×f×4.082×f
1 = 0.000123f^2
f^2 = 1/0.000123048
f^2 = 8126.922
f =√8126.922
f = 90.14 Hz
Answer:
False I'm pretty sure sorry If its wrong
Answer:
A selective medium, a differential medium, and a complex medium.
Explanation:
A selective media is a microbiological media which only support the growth of a particular specie or types of species of microorganisms,this media acts in such a way to inhibit or hinder the growth of other microorganisms.
Differential media are media that acts to Identifying particular strains of microorganisms of similar species.
Complex media are media used for the growth of microorganisms this which contains complex or a wide range of nutrients with chemical composition which may be difficult to determine.
Answer:
The frequency that the sampling system will generate in its output is 70 Hz
Explanation:
Given;
F = 190 Hz
Fs = 120 Hz
Output Frequency = F - nFs
When n = 1
Output Frequency = 190 - 120 = 70 Hz
Therefore, if a system samples a sinusoid of frequency 190 Hz at a rate of 120 Hz and writes the sampled signal to its output without further modification, the frequency that the sampling system will generate in its output is 70 Hz