Explanation:
Given that,
Potential = 75 kV
Exposure = 200 mR
Time = 0.2 sec
We need to calculate the x-ray fluence during this chest x-ray exam
Using formula of fluence

Put the value into the formula


We need to calculate the energy fluence
Using formula of energy fluence


We need to calculate dose -equivalent delivered to the bone, muscle, and fat
Using formula of dose

Where, D = dose
E = energy
t = time
Put the value into the formula


Hence, This is the required solution.
To solve this problem, we use the formula
λ = s sin θ
where s is the separation and θ is the angle interference
So,
λ = 20 x 10^-6 sin 2.5
λ = 8.72 x 10^-7 m
The required angle for the fourth order bright fringe is
θb = sin⁻¹ (4λ / s) = sin⁻¹ (4 (8.72 x 10^-7 m)/ 20 x 10^-6 ) = 10.04°
The required angle for the fourth order dark fringe is
θd = sin⁻¹ (4.5 λ / s) = sin⁻¹ (4.5 (8.72 x 10^-7 m)/ 20 x 10^-6 ) = 11.31°
Can you include an image of the object and it’s dimensions?
Answer:
The bird has 20,000 times higher kinetic energy than the mosquito.
Explanation:
The formula for kinetic energy shows that the amount of energy is proportional to the mass:

The velocity of both objects being the same, the mass is the determiner. The ratio of the kinetic energy of the bird and the mosquito then becomes the ratio of their masses, i.e., 0.02kg/0.00001kg. The bird's energy is 20,000 times higher than that of the mosquito. This proportion becomes more believable if you imagine the event of a distracted errant bird colliding with your head, versus a confused mosquito colliding with your head.
Answer:
The tension in the rope is 20 N
Solution:
As per the question:
Mass of the object, M = 2 kg
Density of water, 
Density of the object, 
Acceleration due to gravity, g = 
Now,
From the fig.1:
'N' represents the Bouyant force and T represents tension in the rope.
Suppose, the volume of the block be V:
V =
(1)
Also, we know that Bouyant force is given by:

Using eqn (1):


From the fig.1:
N = Mg + T
40 = 2(10) + T
T = 40 - 20 = 20 N
