Refer to the figure shown below.
The velocity of the child and the velocity of the ship should be added vectorially to find the speed and direction of the child relative to the water surface.
The magnitude of the child's velocity is
v = √(2² + 18²) = 18.11 mph
The direction of the child's speed is
θ = tan⁻¹ (18/2) = tan⁻¹ 9 = 83.7° north of east or counterclockwise from the eastern direction.
Answer:
The magnitude is 18.1 mph.
The direction is 84° north of east.
Precisely around 1,800 miles below.
my bad i clicked the wrong question to do sorry i wish i could help but im dumb lol
According to the statement " Collision <span>between two bodies in which the total kinetic energy of the two bodies after the collision is equal to their total kinetic energy before the collision."
The best answer is :
Option A " </span><span>BODY A COMES TO REST BODY B STARTS MOVING WITH INITIAL VELOCITY OF BODY A "</span>
Answer:
wavelength
= 437.27 nm
Explanation:
given data
first bright fringe = 2.96 mm
slit separation = 0.325 mm
distance D = 2.20 m
solution
we know that this is double slit experiment
so we apply here Fringe width formula that is
β =
....................1
is Wavelength of light and D is Distance between screen and slit and d is slit width
so put here value and we get
=
= 437.27 ×
m
wavelength
= 437.27 nm