Answer: 
Explanation:
For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
Here iron is having an oxidation state of +3 called as
cation and oxide
is an anion with oxidation state of -2. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral
.
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.

Convert mols to grams by multiplying grams of tin by the number of mols.
There are 119 grams per mol
119 x 11.8 = 1404 grams
Answer:
The molality of the solution is 0.3716 mol/kg
The number of moles of solute is 0.0157 mol
The molecular weight of the solute is 129.30 g/mol
The molar mass of the solute is 129.32 g/mol
Explanation:
m (molality of the solution) = ∆T/Kf = (43.17 - 40.32)/7.67 = 0.3716 mol/kg
Number of moles of solute = molality × mass of solvent in kilogram = 0.3716 × 0.04219 = 0.0157 mol
Molecular weight of solute = mass/number of moles = 2.03/0.0157 = 129.3 g/mol
When Kf = 7.66 °C.kg/mol
Molar mass = 2.03 ÷ (2.85/7.66 × 0.04219) = 129.32 g/mol
The atomic mass of the isotope Ni ( 62 over 28 ) = 61.928345 amu.
Mass of the electrons: 28 · 5.4584 · 10^(-4 ) amu = 0.0152838 amu ( g/mol )
Mass of the nuclei:
61.928345 amu - 0.0152838 amu = 61.913062 amu (g/mol)
The mass difference between a nucleus and its constituent nucleons is called the mass defect.
For Ni ( 62 over 28 ): Mass of the protons: 28 · 1.00728 amu = 28.20384 amu
Mass of the neutrons: 34 · 1.00866 amu = 34.299444 amu
In total : 62.49828 amu
The mass defect = 62.49828 - 61.913062 = 0.585218 amu
Nucleus binding energy:
E = Δm · c² ( the Einstein relationship )
E = 0.585218 · ( 2.9979 · 10^8 m/s )² · 1 / (6.022 · 10^23) · 1 kg / 1000 g =
= 0.585218 · 8.9874044 · 10 ^16 : (6.022 · 10^23) · 0.001 =
= ( 5.2595908 : 6.022 ) · 0.001 · 10^(-7 ) =
= 0.0008733 · 10^(-7) J = 8.733 · 10^(-11) J
The nucleus binding energy per nucleon:
8.733 · 10^(-11) J : 62 = 0.14085 · 10 ^(-11) =
= 1.4085 · 10^(-12) J per nucleon.