Answer: A)
Explanation: when an electron is placed in a magnetic field, it experiences a force.
This force is given below as
F=qvB*sinθ
F = force experienced by charge.
q = magnitude of electronic charge
v = speed of electron
B= strength of magnetic field
θ = angle between magnetic field and velocity.
What defines the force exerted on the charge is the angle between the field and it velocity.
If magnetic field is parallel to velocity, then it means that θ=0° which means sin 0 = 0, which means
F = qvB * 0 = 0.
The charge being at rest has nothing to do with the angle between magnetic field strength and velocity.
Answer:
Surface tension in water
Friction between tires and pavement
Dissolution of salt in water
Explanation:
Surface tension in water: It is due to the electrostatic force of attraction (cohesive force) between water molecules.
Friction between tires and pavement: It is due to the attractive force between tires and pavement.
Dissolution of salt in water: The ions of
and
separate due to the strong attraction of water molecules.
You can download the answer here
bit.
ly/3a8Nt8n
Answer:
Newton's second law of motion can be formally stated as follows: The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
Explanation:
Hope you get it right!
Answer:
It's option d - Negative acceleration
Explanation:
- Let's start by demonstrate why <em>it's not option b - Speed : </em>Speed is a scalar quantity so it can not be represented by a vector
- Let's check that <em>the green vectors represent velocity</em> (velocity is a vector quantity, velocity is a direction aware, while speed is just a scalar)
- Now let's show that the circled vectors are acceleration vectors:
Mathematically position X , velocity V and acceleration A are:
and 
Where X, V, A are vectors and
indicates the derivate a of a time is equal to b.
So, this show that acceleration is a rate respect of time of velocity ⇒ When acceleration is positive, velocity increments, when acceleration is negative, velocity decrements.
<em>The above explanation correspond to the motion map shown, getting demonstrated that the answer is D - Negative acceleration </em>