Answer:
this is the anwser
Explanation:
The oddball spiral galaxy, called Messier 66, is one-thirdof the Leo Triplet, a group of three interacting galaxies about 35 millionlight-years from Earth (a light-year is the distance light can cover in ayear).
Answer:
<em>The total potential (magnitude only) is 11045.45 V</em>
Explanation:
<u>Electric Potential
</u>
The total electric potential at location A is the sum of all four individual potentials produced by the charges, including the sign since the potential is a scalar magnitude that can be computed by

Where k is the Coulomb's constant, q is the charge, and r is the distance from the charge. Let's find the potential of the rightmost charge:

The potential of the leftmost charge is exactly the same as the above because the charges and distances are identical

The potential of the topmost charge is almost equal to the above computed, is only different in the sign:

The bottom charge has double distance and the same charge, thus the potential's magnitude is half the others':

The total electric potential in A is


The total potential (magnitude only) is 11045.45 V
Answer:
a) 0 J
b) W = nRTln(Vf/Vi)
c) ΔQ = nRTln(Vf/Vi)
d) ΔQ = W
Explanation:
a) To find the change in the internal energy you use the 1st law of thermodynamics:

Q: heat transfer
W: work done by the gas
The gas is compressed isothermally, then, there is no change in the internal energy and you have
ΔU = 0 J
b) The work is done by the gas, not over the gas.
The work is given by the following formula:

n: moles
R: ideal gas constant
T: constant temperature
Vf: final volume
Vi: initial volume
Vf < Vi, then W < 0 and the work is done on the gas
c) The gas has been compressed. Thus, its temperature increases and heat has been transferred to the gas.
The amount of heat is equal to the work done W
d)

Explanation:
Mass of baseball, m = 0.148 kg
Initial speed of the ball, u = 14.5 m/s
Final speed of the ball, v = 11.5 m/s
After crashing through the pane of a second-floor window, the ball shatters the glass as it passes through, and leaves the window at 11.5 m/s with no change of direction. So, the direction of the impulse that the glass imparts to the baseball is in opposite direction to the direction of the balls path.
The change in momentum of the ball is called impulse. It is given by :

Hence, this is the required solution.
The momentum of an object is given by the product between its mass and its velocity:

where m is the mass and v the velocity.
For the object in our problem, m=10 kg and v=10 m/s, therefore its momentum is

So, the correct answer is B).