Answer:
Second order
Explanation:
We could obtain the order of reaction by looking at the table very closely.
Now notice that in experiment 1 and 2, the concentration of [OH^-] was held constant while the concentration of [S8] was varied. So we have;
a situation in which the rate of reaction was tripled;
0.3/0.1 = 2.10/0.699
3^1 = 3^1
Therefore the order of reaction with respect to [S8] is 1.
For [OH^-], we have to look at experiment 2 and 3 where the concentration of [S8] was held constant;
x/0.01 = 4.19/2.10
x/0.01 = 2
x = 2 * 0.01
x = 0.02
So we have;
0.02/0.01 = 2^1
2^1 = 2^1
The order of reaction with respect to [OH^-] = 1
So we have the overall rate law as;
Rate = k[S8]^1 [OH^-] ^1
Overall order of reaction = 1 + 1 = 2
Therefore the reaction is second order.
Answer:
C
Explanation:
Introspection is the examination of one's own conscious thoughts and feelings.
Introspection is closely related to human self-reflection and self-discovery and is contrasted with external observation.
Here you go! There are 0.9307 moles in 123.0 g of the compound. I solved this by using a fence post method. I calculated the number of grams in one mol of (NH4)2 SO4 and got 132.16.
I did this by finding the atomic mass of each element on the periodic table (my work is in the color blue for this step)
After that, i divided the given mass by the mass of one mol of the compound.
The answer is 0.9307 moles!! I hope this helped you! :))
With a physical change you can actually see it change like ice turning into water, then with a chemical change you can't see it change, although within the molecules themselves they change which makes that possible.
Hope this helps!
<u>The given reaction is:</u>
F2 + ClO2 → 2FClO2
Rate = k[F2][ClO2]
<u>Explanation:</u>
The possible mechanism for this reaction can be broken down into two steps with the slow step being the rate determining step
Step 1: F2 + ClO2 → FClO2 + F ----------- Slow
Step 2: F + ClO2 → FClO2 ----------- Fast
-----------------------------------------------------------
Overall: F2 + 2ClO2 → 2FClO2
Rate = k[F2][ClO2]