1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gizmo_the_mogwai [7]
4 years ago
14

What are four things that mechanisms can change?

Engineering
1 answer:
Minchanka [31]4 years ago
8 0

Answer:

thanks

Explanation:

You might be interested in
In no less than one hundred fifty words, explain how microstructures reduce friction within fluid power systems. Mention some of
Cerrena [4.2K]

Micro structure can be used to reduce friction and slipping of a smooth surface becoming possible to hold on.

<u>Explanation:</u>

Micro structure is a structure which is very fine and small. It can be made visible if it is seen with the help if a micro scope. It can not be seen other wise directly through the eyes because it is very small is size not becoming visible to the eyes.

These even though are very small is size can be helped to increase the friction on a smooth surface and reduce the slipping of the object off the smooth surface. This will lead to no hurting of the person off a smooth surface.

6 0
4 years ago
What should be given to a customer before doing a repair?
natima [27]
A. I believe, lmk if I’m right
7 0
3 years ago
From the following numbered list of characteristics, decide which pertain to (a) precipitation hardening, and which are displaye
tia_tia [17]

Answer:

(a) Precipitation hardening - 1, 2, 4

(b) Dispersion strengthening - 1, 3, 5

Explanation:

The correct options for each are shown as follows:

Precipitation hardening

From the first statement; Dislocation movement is limited by precipitated particles. This resulted in an expansion in hardness and rigidity. Precipitates particles are separated out from the framework after heat treatment.

The aging process occurs in the second statement; because it speaks volumes on how heated solutions are treated with alloys above raised elevated temperature. As such when aging increases, there exists a decrease in the hardness of the alloy.

Also, for the third option for precipitation hardening; This cycle includes the application of heat the alloy (amalgam) to a raised temperature, maintaining such temperature for an extended period of time. This temperature relies upon alloying components. e.g. Heating of steel underneath eutectic temperature. Subsequent to heating, the alloy is extinguished and immersed in water.

Dispersion strengthening

Here: The effect of hearting is not significant to the hardness of alloys hardening by the method in statement 3.

In statement 5: The process only involves the dispersion of particles and not the application of heat.

8 0
3 years ago
The ABC Corporation manufactures and sells two products: T1 and T2. 20XX budget for the company is given below:
Sliva [168]

Answer:

The ABC Corporation

a) Total Expected Revenue (in dollars) for 20XX:

Revenue from T1 = 60,000 x $165 = $26,400,000

Revenue from T2 = 40,000 x $250 = $10,000,000

Total Revenue from T1 and T2 = $36,400,000

b) Production Level (in units) for T1 and T2

                                           T1                       T2

Total Units sold             160,000           40,000

Add Closing Inventory   25,000             9,000

Units Available for sale 185,000           49,000

less opening inventory  20,000             8,000

Production Level          165,000 units 41,000 units

c) Total Direct Material Purchases (in dollars):

Cost of direct materials used    T1                T2

A:       (165,000 x 4 x $12)   $7,920,000   $2,460,000 (41,000 x 5 x $12)

B:       (165,000 x 2 x $5)       1,650,000          615,000 (41,000 x 3 x $5)

C:                                                           0          123,000 (41,000 x 1 x$3)

Total cost                            $9,570,000     $3,198,000 Total = $12,768,000

Cost of direct per unit = $58 ($9,570,000/165,000) for T1 and $78 ($3,198,000/41,000) for T2

Cost of direct materials used for production $12,768,000

Cost of closing direct materials:

                 A  (36,000 x $12)  $432,000

                 B (32,000 x $5)        160,000

                 C (7,000 x $3)            21,000             $613,000

Cost of direct materials available for prodn   $13,381,000

Less cost of beginning direct materials:

                 A  (32,000 x $12)        $384,000

                 B  (29,000 x $5)            145,000

                 C  (6,000 x $3)                18,000        $547,000

Cost of direct materials purchases               $12,834,000

d) The Total Direct Manufacturing Labor Cost (in dollars):

                                             T1                         T2

Direct labor per unit              2 hours                  3 hours

Direct labor rate per hour    $12                        $16

Direct labor cost per unit   $24                          $48

Production level              165,000 units        41,000 units

Labor Cost ($)                $3,960,000        $1,968,000

Total labor cost  $5,928,000 ($3,960,000 + $1,968,000)

e) Total Overhead cost (in dollars):

Overhead rate  = $20 per labor hour

Overhead cost per unit: T1 = $40 ($20 x 2) and T2 = $60 ($20 x 3)

T1 overhead = $20 x 2  x 165,000) = $6,600,000

T2 overhead = $20 x 3 x 41,000) =    $2,460,000

Total Overhead cost =                        $9,060,000

Cost of goods produced:

Cost of opening inventory of materials  = $547,000

Purchases of directials materials             12,834,000

less closing inventory of materials     =      $613,000

Cost of materials used for production    12,768,000

add Labor cost                                           5,928,000

add Overhead cost                                    9,060,000

Total production cost                            $27,756,000

f) Total cost of goods sold (in dollars):

Cost of opening inventory =          $3,928,000

Total Production cost             =    $27,756,000

Cost of goods available for sale  $31,684,000

Less cost of closing inventory       $4,724,000

Total cost of goods sold            $26,960,000

g) Total expected operating income (in dollars)

Sales Revenue:  T1 and T2  $36,400,000

Cost of goods sold                 26,960,000

Gross profit                             $9,440,000

less marketing & distribution      400,000

Total Expected Operating Income = $9,040,000

Explanation:

a) Cost of beginning inventory of finished goods:

T1, (Direct materials + Labor + Overhead) X inventory units =

T1 = 20,000 x ($58 + 24 + 40) = $2,440,000

T2 = 8,000 ($78 + 48 + 60) = $1,488,000

Total cost of beginning inventory = $3,928,000

b) Cost of closing Inventory of finished goods:

T1 = 25,000 x ($58 + 24 + 40) = $3,050,000

T2 = 9,000 ($78 + 48 + 60) = $1,674,000

Total cost of closing inventory = $4,724,000

5 0
4 years ago
For better thermal control it is common to make catalytic reactors that have many tubes packed with catalysts inside a larger sh
Paul [167]

Answer:

the  pressure drop  is 0.21159 atm

Explanation:

Given that:

length of the reactor L = 2.5 m

inside diameter of the reactor d= 0.025 m

diameter of alumina sphere dp= 0.003 m

particle density  = 1300 kg/m³

the bed void fraction \in =  0.38

superficial mass flux m = 4684 kg/m²hr

The Feed is  methane with pressure P = 5 bar and temperature T = 400 K

Density of the methane gas \rho = 0.15 mol/dm ⁻³

viscosity of methane gas \mu = 1.429  x 10⁻⁵ Pas

The objective is to determine the pressure drop.

Let first convert the Density of the methane gas from 0.15 mol/dm ⁻³  to kg/m³

SO; we have :

Density =  0.15 mol/dm ⁻³  

Molar mass of methane gas (CH₄) = (12 + (1×4) ) = 16 mol

Density =  0.1 5 *\dfrac{16}{0.1^3}

Density =  2400

Density \rho_f =  2.4 kg/m³

Density = mass /volume

Thus;

Volume = mass/density

Volume of the methane gas =  4684 kg/m²hr / 2.4 kg/m³

Volume of the methane gas = 1951.666 m/hr

To m/sec; we have :

Volume of the methane gas = 1951.666 * 1/3600 m/sec = 0.542130 m/sec

Re = \dfrac{dV \rho}{\mu}

Re = \dfrac{0.025*0.5421430*2.4}{1.429*10^5}

Re=2276.317705

For Re > 1000

\dfrac{\Delta P}{L}=\dfrac{1.75 \rho_f(1- \in)v_o}{\phi_sdp \in^3}

\dfrac{\Delta P}{2.5}=\dfrac{(1.75 *2.4)(1- 0.38)*0.542130}{1*0.003 (0.38)^3}

\Delta P=8575.755212*2.5

\Delta = 21439.38803 \ Pa

To atm ; we have

\Delta P = \dfrac{21439.38803 }{101325}

\Delta P =0.2115903087  \ atm

ΔP  ≅  0.21159 atm

Thus; the  pressure drop  is 0.21159 atm

4 0
3 years ago
Other questions:
  • The direction of rotation of a dc series motor or a universal motor connected to a dc power source A) depends on the polarities
    15·1 answer
  • What colour is best for radiative heat transfer? a. Black b. Brown c. Blue d. White
    7·1 answer
  • A Newtonian fluid with a viscosity of 50 cP is placed between two large parallel separated by a distance of 8 mm. Each plate has
    7·1 answer
  • A tank with some water in it begins to drain. The function v ( t ) = 46 − 3.5 t determines the volume of the water in the tank (
    12·1 answer
  • For a LED diode that has a= 632 nm, then the A1 is equal to:​
    13·1 answer
  • Hi shawty have a good day/night &lt;33 (heres a picture of freddie benson)
    11·2 answers
  • Match the terms with the correct definitions.
    14·1 answer
  • The seers were of the opinion that_____ . *
    14·1 answer
  • When an object is plumb, it is _____.
    11·2 answers
  • More and more companies are discarding the traditional superior-subordinate performance feedback process and replacing it with:
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!