When It begins to drop because that when gravity will have its strongest pull on the object.
Answer:
Explanation:
Current, I = 6 A
diameter of wire, d = 2.05 mm
number of electrons per unit volume, n = 8.5 x 10^28
If the diameter is doubled,
The resistance of the wire is inversely proportional to the square of the diameter of the wire, so the resistance is one forth an the current is directly proportional to the diameter of the wire so the current is four times the initial value.
The question just basically explained what happens
Answer:
Explanation:
When the central shaft rotates , the seat along with passenger also rotates . Their rotation requires a centripetal force of mw²R where m is mass of the passenger and w is the angular velocity and R is radius of the circle in which the passenger rotates.
This force is provided by a component of T , the tension in the rope from which the passenger hangs . If θ be the angle the rope makes with horizontal ,
T cos θ will provide the centripetal force . So
Tcosθ = mw²R
Tsinθ component will balance the weight .
Tsinθ = mg
Dividing the two equation
Tanθ = 
Hence for a given w , θ depends upon g or weight .