Explanation:
It is given that,
Mass of the brick, m = 1.15 kg
Radius of the circle, r = 1.44 m
The cable will break if the tension exceeds 43.0 N
Let v is the maximum sped can have at the bottom of the circle before the cable will break. At the bottom of the circle, the net force is equal to the centripetal force along with the weight of the brick. So,




v = 6.30 m/s
So, the maximum speed of the brick at the bottom of the circle before the cable will break is 6.3 m/s. Hence, this is the required solution.
Answer:
98 m √
Explanation:
How about s = Vo * t + ½at² ?
s = h = Vo * 2s - 4.9m/s² * (2s)² = 2Vo - 19.6
and
h = Vo * 10s - 4.9m/s² * (10s)² = 10Vo - 490
Subtract 2nd from first:
0 = -8Vo + 470.4
Vo = 58.8 m/s
h = 58.8m/s * 2s - 4.9m/s² * (2s)² = 98 m
Answer:
Definition of envelop
transitive verb
1: to enclose or enfold completely with or as if with a covering
2: to mount an attack on (an enemy's flank)
Answer:
12 kgm²
Explanation:
here angular acceleration = 10rad/sec²
torque= 120Nm
moment of inertia=?
we know,
torque= angular acceleration× moment of Inertia
or, moment of inertia = torque/angular acceleration
= 120/10
= 12kgm²