Answer:
<h2>2.44 L</h2>
Explanation:
The volume can be used by using the formula for Boyle's law which is

where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume
Since we're finding the final volume

We have

We have the final answer as
<h3>2.44 L</h3>
Hope this helps you
Similarities. very useful
differences. coal is a pullutant. while womd is not. i guess
Answer:
- <u><em>Yes, 200 ml of fluid can be transferred to a 1-quart container.</em></u>
Explanation:
You must compare the two volumes, 200 ml and 1 quart. If 200 ml is less than or equal to 1 quart, then 200 ml of fluid can be transferred to a 1-quart container, else it is not possible.
To compare, the two volumes must be on the same system of units.
Quarts is a measure of volume equivalent to 1/4 of gallon.
One gallon is approximately 3.785 liters.
3.785 liter = 3.785 liter × 1,000 ml/liter
Then, to convert 1 quart to ml use the unit cancellation method:
- (1/4)gallon × 3.785 liter/gallon × 1,000ml / liter = 946.25 ml
Thus, you get that a 1-quart container has volume of 946.25 ml, which allows that 200ml of fluid be transferred to it.
Explanation:
Relation between pH and concentration of hydrogen ions is as follows.
pH = ![-log [H^{+}]](https://tex.z-dn.net/?f=-log%20%5BH%5E%7B%2B%7D%5D)
So, it means that an increase in the value of pH will show that there occurs a decrease in concentration of hydrogen ions.
Therefore, the solution becomes basic in nature.
On the other hand, a decrease in the value of pH will show that there occurs an increase in the concentration of hydrogen ions.
Therefore, the solution becomes more acidic in nature.
Hence, if the pH of a solution is decreased from pH 8 to pH 6 it means that the concentration of hydrogen ions has increased in the solution.
<h2>a)
The rate at which
is formed is 0.066 M/s</h2><h2>b)
The rate at which molecular oxygen
is reacting is 0.033 M/s</h2>
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.
Rate in terms of disappearance of
=
= 0.066 M/s
Rate in terms of disappearance of
= ![-\frac{1d[O_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BO_2%5D%7D%7Bdt%7D)
Rate in terms of appearance of
= ![\frac{1d[NO_2]}{2dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1d%5BNO_2%5D%7D%7B2dt%7D)
1. The rate of formation of 
![-\frac{d[NO_2]}{2dt}=\frac{1d[NO]}{2dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BNO_2%5D%7D%7B2dt%7D%3D%5Cfrac%7B1d%5BNO%5D%7D%7B2dt%7D)
![\frac{1d[NO_2]}{dt}=\frac{2}{2}\times 0.066M/s=0.066M/s](https://tex.z-dn.net/?f=%5Cfrac%7B1d%5BNO_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B2%7D%7B2%7D%5Ctimes%200.066M%2Fs%3D0.066M%2Fs)
2. The rate of disappearance of 
![-\frac{1d[O_2]}{dt}=\frac{d[NO]}{2dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BO_2%5D%7D%7Bdt%7D%3D%5Cfrac%7Bd%5BNO%5D%7D%7B2dt%7D)
![-\frac{1d[O_2]}{dt}=\frac{1}{2}\times 0.066M/s=0.033M/s](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BO_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ctimes%200.066M%2Fs%3D0.033M%2Fs)
Learn more about rate law
brainly.com/question/13019661
https://brainly.in/question/1297322