Answer:
6 moles
Explanation:
From the equation you can see that twice as many HCL moles are used as H2 produced
2 x 3 = 6 moles of HCL required
Answer:
=1.068 ×10⁻¹³N
Explanation:
Force of gravity =Gm₁m₁/d² where G is the universal gravitation constant =G = 6.673 x 10-11 N m²/kg², m₁ and m₂ is the mass of object 1 and 2 respectively and d is the distance between them. First we change the distance into SI units i.e meters 25 km= 25000 m
F= (6.673 x 10⁻¹¹ N m²/kg²×1000 kg×1000 kg)/ (25000 m)²
=1.068 ×10⁻¹³N
Kinetics is the topic generally used to explain
Hi!
The correct options would be:
1. Cathode - <em>reduction</em>
The cathode is the negatively charged electrode, and so has an excess of electrons. Cations (positively charged ions) are attracted to the cathode, and gain electrons to acquire a neutral charge. The process in which a gain of electron occurs is called reduction.
2. Anode - <em>oxidation</em>
The opposite occurs at the anode which is positively charged and attracts negatively charged ions, anions. These anions lose their electrons at the anode to acquire a neutral charge, and the process involving loss of electrons is known as oxidation.
3. Salt Bridge - <em>ion transport </em>
Salt bridge is a physical connection between the the anodic and cathodic half cells in an electrochemical cell and is a pathway that facilitates the flow of ions back and forth these half cells. Salt bridge is involved in maintaining a neutral condition in the electrochemical cells, and its absence would result in the accumulation of positive charge in the anodic cell, and negative charge in the cathodic cell.
4. Wire - <em>electron transport </em>
Wires have a universal role of being a pathway for the transport of electrons in circuit. This role is also the same in the wires involved in an electrochemical cells where they are used to transport electrons from the anodic half cell, and this electron transport results in the generation of electricity in the internal circuit of the electrochemical cell.
Hope this helps!
Answer:
A liquid-fueled rocket has two liquids (liquids are good because of the density, they need less space than a gas to be stored), such that these liquids are called the fuel and the oxidizer.
These liquids are injected into a system that leads to a combustion chamber, where the liquids are mixed (we need to mix the fuel with the oxidizer to enable the combustion of the fuel) and burned to produce thrust.
Some common examples of oxidizers are liquid oxygen, which may be combined with fuels like liquid hydrogen, liquid methane, kerosene and hydrazine.
Other oxidizers are liquid fluorine (which also can be combined with the fuels liquid hydrogen and hydrazine), nitrogen tetroxide (which can be combined whit kerosene, hydrazine and other fuels) and FLOX-70, which can only be combined with kerosene.
The "most commonly used" may depend on the country and the type of liquid propellant ( petroleum, cryogens, and hypergols)
Such that the most common oxidizer may be liquid oxygen, and the most common fuel the kerosene.