Answer:
Galileo di Vincenzo Bonaiuti de' Galilei
Answer:
I think it is the first one: <u>The arrow appears reversed because light is bent as it enters the water, and again as it exits. The two light paths cross, making the direction of the arrow appear crossed.</u>
Explanation:
Answer:
independent variables are variables in mathematical modeling, statistical modeling and experimental science
Answer:
v = 1 m/s
Explanation:
from the principle of conservation of momentum, we have following relation
initial momentum = final momentum

where
m1 = 1.14 kg
v1 = 2.0 m/s
m2 = 1.14 kg
v2 = 0 m/s
putting all value in the above equation


v = 1 m/s
Answer:
Explanation:
First, let's review the ideal gas law, PV = nRT. In this equation, 'P' is the pressure in atmospheres, 'V' is the volume in liters, 'n' is the number of particles in moles, 'T' is the temperature in Kelvin and 'R' is the ideal gas constant (0.0821 liter atmospheres per moles Kelvin).