Answer:
C. It blocked out sunlight
Explanation:
The asteroid impact 65 million years ago was devastating for lot of the animals and plants, resulting in a mass extinction, most noticeably of the dinosaurs. The impact itself killed a lot of flora and fauna, but it was the effect afterward that was crucial. From this impact, there was so much debris propelled into the atmosphere that the sunlight got blocked. Once this happened, most of the plants died out as they were not able to perform photosynthesis. Because the plants were dying out, the herbivores were left without food, so soon they followed, and because the herbivores died out, the predators died out to because they were left without food. The winners turned out to be the small and not specialized plants and animals.
<em>The statement that gives the relationship between energy needed in breaking a bond and the one that is released after breakin</em>g is
The amount of energy it takes to break a bond is always less than the amount of energy released when the bond is formed.
- Bond energy can be regarded as amount of energy that is required in breaking a particular bond.
- For a bond to be broken Energy will be added and when a bond is broken there will be release of energy
- Bond breaking can be regarded as endothermic process, it is regarded as endothermic because there is a lot of energy required to be absorbed.
- Where ever a bond is broken, there must be formation of another bond
- Bond forming on the other hand can be regarded as exothermic process, since there is a release of releases energy.
Therefore, more energy is required in breaking of bond compare to energy released after breaking of bond.
Learn more at : brainly.com/question/10777799?referrer=searchResults
Answer:
A. CsBr(s)
Explanation:
we will get here compound with the lowest lattice energy
solution
As we know that Lattice energy is always proportional to the charge of ions and it is inversely proportional to the size of ions.
so that by the smallest charge and the largest size give us the lowest lattice energy and that charge and size is express as here as
Charge
Cs (+1), K(+1), Na (+1), Cl(-1), Br(-1), Sr(+2), Ca(+2), O(-2) .......................1
and
Size
Na+ < Ca2+ < K+ < Sr2+ < Cs+, O2- < Cl- < Br- ..........................2
so that here
correct answer is A. CsBr
<u>Analysing the Question:</u>
We are given a 250 mL solution of 0.5M K₂Cr₂O₇
Which means that we have:
0.5 Mole in 1L of the solution
0.125 moles in 250 mL of the solution <em>[dividing both the numbers by 4]</em>
<em />
<u>Mass of K₂Cr₂O₇ in the given solution:</u>
Molar mass of K₂Cr₂O₇(Potassium Dichromate) = 194 g/mol
<em>we know that we have 0.125 moles in the 250 mL solution provided</em>
Mass = Number of moles * Molar mass
Mass = 0.125 * 194
Mass = 36.75 grams
In a polar covalent bond, the distribution of common electrons are not shared evenly due to a greater positive charge from one atom's nucleus.Oct 30, 2016