Answer: P = 36.75W
The additional power needed to account for the loss is 36.75W.
Explanation:
Given;
Mass of the runner m= 60 kg
Height of the centre of gravity h= 0.5m
Acceleration due to gravity g= 9.8m/s
The potential energy of the body for each step is;
P.E = mgh
P.E = 60 × 9.8 × 0.5
PE = 294J
Since the average loss per compression on the leg is 10%.
Energy loss = 10% (P.E)
E = 10% of 294J
E = 29.4J
To calculate the runner's additional power
given that time per stride is = 0.8s
Power P = Energy/time
P = E/t
P = 29.4J/0.8s
P = 36.75W
The formula for calcium oxide is CaO.
Answer:
Part A:
The proton has a smaller wavelength than the electron.
<
Part B:
The proton has a smaller wavelength than the electron.
<
Explanation:
The wavelength of each particle can be determined by means of the De Broglie equation.
(1)
Where h is the Planck's constant and p is the momentum.
(2)
Part A
Case for the electron:

But 


Case for the proton:


Hence, the proton has a smaller wavelength than the electron.
<em>Part B </em>
For part b, the wavelength of the electron and proton for that energy will be determined.
First, it is necessary to find the velocity associated to that kinetic energy:


(3)
Case for the electron:

but


Then, equation 2 can be used:

Case for the proton :

But 


Then, equation 2 can be used:

Hence, the proton has a smaller wavelength than the electron.
The distance D where the object comes to rest is 1.08.m.
<h3>What is the distance?</h3>
- The separation of one thing from another in space; the distance or separation in space between two objects, points, lines, etc.; remoteness. The distance of seven miles cannot be accomplished in one hour of walking.
- Learn how to use the Pythagorean theorem to get the separation between two points using the distance formula. The Pythagorean theorem can be rewritten as d==(((x 2-x 1)2+(y 2-y 1)2)
- The distance between any two places is the length of the line segment separating them. By measuring the length of the line segment that connects the two points in coordinate geometry, the distance between them may be calculated.
(c) the distance D where the object comes to rest.
ΔKE ⇒ -0.25*1*9.8*D = 0-1/2*1*
⇒
⇒1.08.m
To learn more about distance, refer to:
brainly.com/question/4998732
#SPJ4
Answer:
1 cm⁻¹ =1.44K 1 ev = 1.16 10⁴ K
Explanation:
The relationship between temperature and thermal energy is
E = K T
The relationship of the speed of light
c =λ f = f / ν 1/λ= ν
The Planck equation is
E = h f
Let's start the transformations
c = f λ = f / ν
f = c ν
E = h f
E = h c ν
E = KT
h c ν = K T
T = h c ν / K =( h c / K) ν
Let's replace the constants
h = 6.63 10⁻³⁴ J s
c = 3 10⁸ m / s
K = 1.38 10⁻²³ J / K
v = 1 cm-1 (100 cm / 1 m) = 10² m-1
T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 1 10²
A = h c / K = 1,441 10⁻²
T = 1.44K
ν = 103 cm⁻¹ = 103 10² m
T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 103 10²
T = 148K
1 Rydberg = 1.097 10 7 m
As we saw at the beginning the λ=1 / v
T = (h c / K) 1 /λ
T = 1,441 10⁻² 1 / 1,097 10⁷
T = 1.3 10⁻⁹ K
E = 1Ev (1.6 10⁻¹⁹ J /1 eV) = 1.6 10⁻¹⁹ J
E = KT
T = E/K
T = 1.6 10⁻¹⁹ /1.38 10⁻²³
T = 1.16 10⁴ K