Answer:
the final mole of the flexible container = 12.92 moles
Explanation:
Given that :
initial volume of a flexible container = 6.13 L
initial mole of a flexible container = 6.51 mol
final volume of a flexible container = 18.3 L
final mole of a flexible container = ???
Assuming the pressure and temperature of the gas remain constant, calculate the number of moles of gas added to the container.
Therefore,


n = 19.43

19.43 = 6.51 + n₂
n₂ = 19.43 - 6.51
n₂ = 12.92 moles
Thus; the final mole of the flexible container = 12.92 moles
Answer:
(<em>i) Concentrated HNO3 can be stored and transported in aluminium containers as it reacts with aluminium to form a thin protective oxide layer on the aluminium surface. This oxide layer renders aluminium passive. (ii) Sodium hydroxide and aluminium react to form sodium tetrahydroxoaluminate(III) and hydrogen gas.</em>
They are directly proportional to each other, in other words, when temperature of an object increases, the motion of it's particles also increases
Hope this helps!
Answer:
236.9g
Explanation:
Given parameters:
Volume of gas = 81.3L
Pressure of gas = 204kPa
temperature of gas = 95°C
Unknown:
Mass of carbondioxide gas = ?
Solution:
To solve this problem, the ideal gas law will be well suited. The ideal gas law is a fusion of Boyle's law, Charles's law and Avogadro's law.
Mathematically, it is expressed as;
PV = nRT
the unknown here is n which is the number of moles;
P is the pressure, V is the volume, R is the gas constant and T is the temperature.
convert pressure into atm
101.325KPa = 1atm
204 kPa =
= 2atm
Convert temperature to Kelvin; 95 + 273 = 368K
2 x 81.3 = n x 0.082 x 368
n =
= 5.38moles
Since the unknown is mass;
Mass = number of moles x molar mass
Molar mass of carbon dioxide = 12 + 2(16) = 44g/mol
Mass = 5.38 x 44 = 236.9g