1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ss7ja [257]
3 years ago
9

Transverse, surface, and longitudinal waves are all __________ waves because they __________.

Physics
1 answer:
algol [13]3 years ago
5 0

Answer:

a. mechanical; require a medium to travel through

Explanation:

Longitudinal, transverse and surface waves are types of mechanical waves. For example, within the longitudinal waves are the sound waves, which needs a medium to propagate like the air. This is why sound does not travel in a vacuum.

And an example of a transverse wave is the waves that form in the water when a rock is thrown (ripples), these waves need a medium (the water) to propagate.

On the other hand, electromagnetic waves such as light waves do not need a medium to propagate, this is why we can see the light of distant stars because their light travels through the vacuum until it reaches us.

So, the answer is:

Transverse, surface, and longitudinal waves are all mechanical waves because they require a medium to travel through .

You might be interested in
A 675 kg car moving at 15.7 m/s hits from behind another car moving at 9.6 m/s in the same direction. If the second car has a ma
Maslowich

Answer:

?!?!?!?!?!?!

Explanation:

?!?!?!?!?!?!?

3 0
3 years ago
Consider two insulating balls with evenly distributed equal and opposite charges on their surfaces, held with a certain distance
siniylev [52]

Answer:

interest point:

1) Point on the left side

2) Point within the radius r₁ of the first sphere

3) Point between the two spheres

4) point within the radius r₂ of the second sphere

5) Right side point

Explanation:

In this case, the total electric field is the vector sum of the electric fields of each sphere, to simplify the calculation on the line that joins the two spheres

       

We will call the sphere on the left 1 and it has a positive charge Q with radius r1, the sphere on the right is called 2 with charge -Q with radius r2. The total field is

          E_ {total} = E₁ + E₂

          E_{ total} = k \frac{Q}{x_1^2} + k  \frac{Q}{x_2^2}

the bold indicate vectors, where x₁ and x₂ are the distances from the center of each sphere. If the distance that separates the two spheres is d

          x₂ = x₁ -d

          E total = k  \frac{Q}{x_1^2} - k \frac{Q}{(x_1 - d)^2}

Let's analyze the field for various points of interest.

1) Point on the left side

in this case

            E_ {total} = k Q \ ( \frac{1}{x_1^2} - \frac{1}{(x_1 +d)2} )

            E_ {total} = k \frac{Q}{x_1^2}   ( 1 - \frac{1}{(1 + \frac{d}{x_1} )^2 } )

We have several interesting possibilities:

* We can see that as the point is further away the field is more similar to the field created by two point charges

* there is a point where the field is zero

            E_ {total} = 0

             x₁² =  (x₁ + d)²

           

2) Point within the radius r₁ of the first sphere.

In this case, according to Gauus' law, the charge is on the surface of the sphere at the point, there is no charge inside so this sphere has no electric field on its inner point

              E_ {total} = -k \frac{Q}{x_2^2} = -k \frac{Q}{((d-x_1)^2}

this expression holds for the points located at

                  -r₁ <x₁ <r₁

3) Point between the two spheres

                E_ {total} = k \frac{Q}{x_1^2} + k \frac{Q}{(d+x_1)^2}

This champ is always different from zero

4) point within the radius r₂ of the second sphere, as there is no charge inside, only the first sphere contributes

                  E_ {total} = + k \frac{Q}{(d-x_1)^2}+ k Q / (d-x1) 2

point range

                  -r₂ <x₂ <r₂

             

5) Right side point

            E_ {total} = k \frac{Q}{(x_2-d)^2} - k \frac{Q}{x_2^2}

             E_ {total} = - k \frac{Q}{x_2^2} ( 1- \frac{1}{(1- \frac{d}{x_2})^2 } )- k Q / x22 (1- 1 / (x1 + d) 2)

we have two possibilities

* as the distance increases the field looks more like the field created by two point charges

* there is a point where the field is zero

8 0
2 years ago
a body dropped from a height reaches a velocity of 13m/s just before touching the ground. What is the initial height of the ball
SashulF [63]

Hi there!

We can use the following (derived) equation to solve for the final velocity given height:

vf = √2gh

We can rearrange to solve for height:

vf² = 2gh

vf²/2g = h

Plug in the given values (g = 9.81 m/s²)

(13)²/2(9.81) = 8.614 m

We can calculate time using the equation:

vf = vi + at, where:

vi = initial velocity (since dropped from rest, = 0 m/s)

a = acceleration (in this instance, due to gravity)

Plug in values:

13 = at

13/a = t

13/9.81 = 1.325 sec

5 0
2 years ago
Help! I don’t really know what it’s asking
Misha Larkins [42]
You have to do the math of each and see which one adds up to 66.5
6 0
2 years ago
How do streams flow?
AfilCa [17]
When rain falls on the land, it either seeps into the ground or becomes runoff, which flows downhill into rivers and lakes.
3 0
3 years ago
Read 2 more answers
Other questions:
  • What will most likely happen if a light wave moves through a solid?
    5·2 answers
  • Salt water is denser than fresh water. a ship floats in both fresh water and salt water. compared to the fresh water, the volume
    14·1 answer
  • Will give BRAINEST to the person who answers right
    8·2 answers
  • A basket ball sits in the ball cage in the gym motionless
    14·1 answer
  • Galileo’s most important contribution to astronomy was his
    15·2 answers
  • An ionized oxygen molecule (O2+) at point A has charge +e and moves at 1.24 ✕ 103 m/s in the positive x-direction. A constant el
    14·1 answer
  • Chemical energy stored in food cannot be transformed into mechanical energy true or false
    15·1 answer
  • If It took 40 Seconds for a vehicle of weight 40,000 Newton to move round a 7 metres, What time will it achieve same feat for an
    12·1 answer
  • 20 A measure of the speed and direction of an object's motion
    7·1 answer
  • Can a physical quantity have units but still be dimensionless?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!