Answer:
Spring's displacement, x = -0.04 meters.
Explanation:
Let the spring's displacement be x.
Given the following data;
Mass of each shrew, m = 2.0 g to kilograms = 2/1000 = 0.002 kg
Number of shrews, n = 49
Spring constant, k = 24 N/m
We know that acceleration due to gravity, g is equal to 9.8 m/s².
To find the spring's displacement;
At equilibrium position:
Fnet = Felastic + Fg = 0
But, Felastic = -kx
Total mass, Mt = nm
Fg = -Mt = -nmg
-kx -nmg = 0
Rearranging, we have;
kx = -nmg
Making x the subject of formula, we have;

Substituting into the formula, we have;


x = -0.04 m
Therefore, the spring's displacement is -0.04 meters.
A vacuum is an electrical motor and<span> which it converts electrical energy into mechanical energy.
</span>
The answer is electromagnetic Induction.
I hope this answer will help you
<h3>
Answer:</h3>
200 kg
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Physics</u>
<u>Newton's Law of Motions
</u>
Newton's 1st Law of Motion: An object at rest remains at rest and an object in motion stays in motion
Newton's 2nd Law of Motion: F = ma (Force is equal to [constant] mass times acceleration)
Newton's 3rd Law of Motion: For every action, there is an equal and opposite reaction<u>
</u>
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] F = 3000 N
[Given] a = 15 m/s²
[Solve] m = <em>x</em> kg
<u>Step 2: Solve for </u><em><u>m</u></em>
- Substitute in variables [Newton's Second Law of Motion]: 3000 N = m(15 m/s²)
- [Mass] [Division Property of Equality] Isolate <em>m</em> [Cancel out units]: 200 kg = m
- [Mass] Rewrite: m = 200 kg
By ideal gas theory, cylinder b has the higher temperature.
We need to know about the ideal gas theory to solve this problem. The ideal gas can be represented by
P . V = n . R . T
where P is the pressure, V is volume, n is the number of molecules, R is the ideal gas constant and T is temperature.
From the question above, we know that
Pa = Pb = P
na = 3nb
Find the temperature of the cylinder a
P . V = n . R . Ta
Ta = P . V /( na . R )
Substitute na
Ta = P . V /( (3nb) . R )
Ta = (1/3) x (P . V /( (nb . R ))
Find the temperature of the cylinder b
P . V = n . R . Tb
Tb = P . V /( nb . R )
The cylinder a temperature is 3 times smaller than the temperature in cylinder b.
Find more on ideal gas at: brainly.com/question/25290815
#SPJ4